This is **Physics PY 105 course!** Welcome! Please, (1) take Lab 1 manual, (2) the syllabus, read the first page, sign it, detach it, and leave the page on the table (and read the full syllabus at home), and (3) sign in using any available sign-in sheet. Thank you. Please, login into webassign.net

(refer to pages 4, 5 of the syllabus) class key: bu 1694 4391

Locate LectureMCQ_L1 (PY105), open it, and answer the Name LectureMCQ L1 (PY105) first question.

Thank you!

for t > 8:00 am

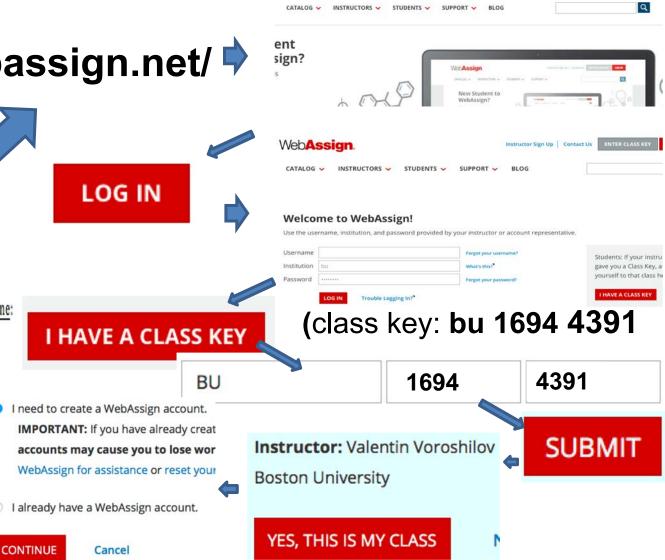
Др. Валентин Викторович Ворошилов

Закончил Пермский Государственный Университет по специальности «Теоретическая Физика» Защитил диссертацию в Московском Академическом Институте Педагогических Инноваций

Др. Валентин Викторович Ворошилов

Mr. ...

Mr. V



1. While registering you need to choose as you username your regular BU login name: for example, if your BU email is abcd123@bu.edu => your username must be abcd123 (just drop @bu.edu).

2. Institution name: BU.

3. As your password you need to use your BU student number in the form U12345678. No dashes or spaces, must start from capital U.

4. As an email you have to use your BU email address (yourusername@bu.edu)

Love Know your teacher!

1. Russian (please inform me of any <u>typos</u>)

2. In the U.S.; teach Physics and Math since 2007, including BU PY105/106 courses.

Please, ignore the way I sound (accent, tone).

Looking for a student to be hired for help with bringing the equipment in and out the class room. Class time included.

Please, read the <u>disclaimer</u>

fast very fast

Professor Rebuttals

COMMENT

Too fast, very fast, Some topics rushed (12)Grammar, Handwriting is hard to understand, **Messy handwriting** (17)Difficult to understand as a result of his accent,

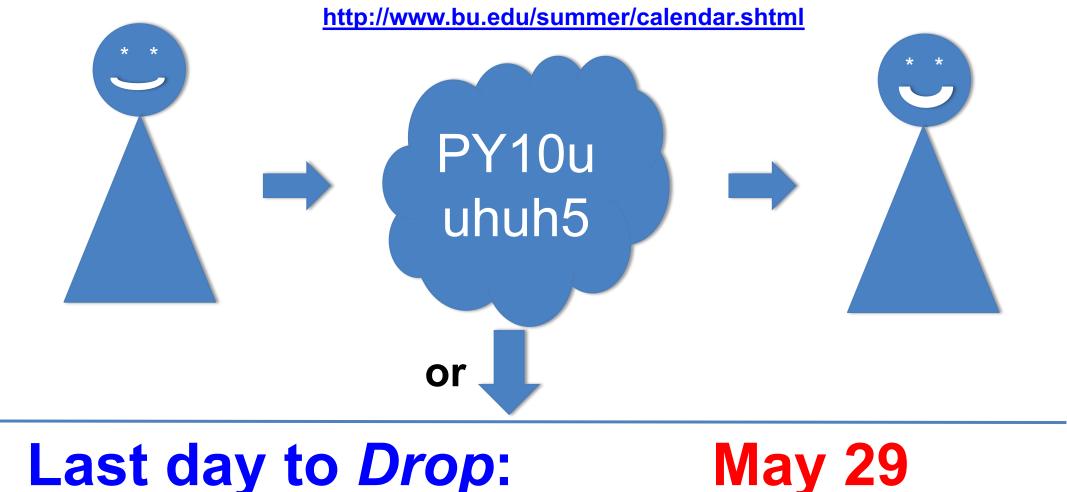
Doesn't speak clearly

Hard to understand

(15)

I HATED physics before I took this guy. He made it so interesting, and he had so many good examples and demonstrations that to my disbelief, I actually started liking physics (and I suck at all math). He's awesome, don't let the previous reviews scare you away. Go to office hours, do the hw, and show up to class; you might even learn something!

Report this rating


Val made physics easy, relateable and extremely worthwhile. Funny dry humor and great demonstrations. Maybe it was the fact that I took this course over the summer that made it easier then the previous posters portray. Literally just do the webassign problems and the ones on the slide, know them well, and you will do great. Highly recommend.

Report this rating

104 students => 59 comments

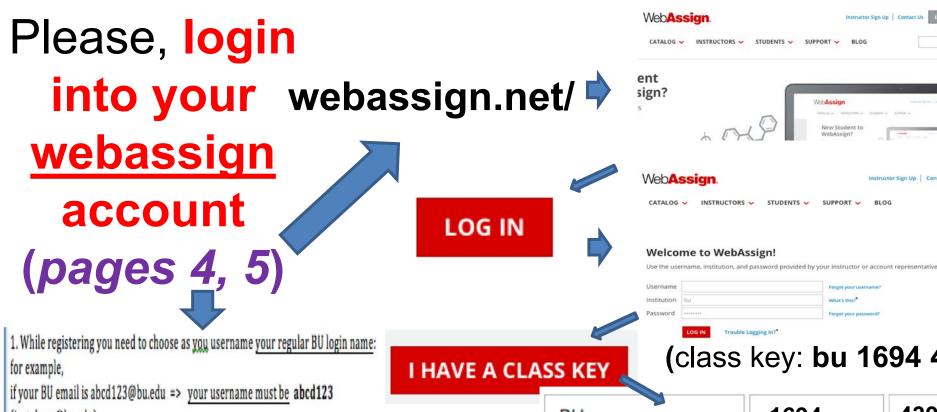
Strengths and positive general	Weaknesses and negative general				
comments	comments				
Good pace.	too fast, very fast, Some topics				
	rushed (12)				
Fun course, Relatively funny,	Very boring lecturer, Monotone,				
Good sense of humor (11)	Occasionally mumbles				
Uploads lecture videos.	Grammar				
Good to post notes/videos online	Handwriting is hard to understand				
	Messy handwriting (17)				
Examples are helpful	Sometimes can't explain the				
There were a ton of examples	question clearly				
during lecture which were	He has a strong accent,				
extremely helpful	Accent thick				
Does relevant problems	Weird accent				
Many examples, discussion and	Difficult to understand as	a result of			
labs were good	his accent	Do not read			
Good at explaining concepts	Doesn't speak clearly				
Concepts are clear, explanations					
for problems clear Explained concepts really well.	much more is on	the WWW			

constantly asks for feedbacks Not willing to meet with students outside of office hours Engaging Cares about students Sometimes mean when we don't Very nice, wants best for students respond to the lecture well, Knows the material well and is rude open to discussion Do not read Sarcastic, dry sense of humor **Knows physics** doesn't listen to students this slide He really enjoys physics Be more approachable refused to meet with students one-So interesting I really enjoyed taking Prof Val on-one to talk about the exam and would def sign up to take Horrible at taking criticism, makes another on of his courses. it the students fault. You can tell he wants his students Never felt like he cared for his to understand and do well. students I really like Mr. V's humor and his When we performed poorly on an demonstrations are always fun. I exam he blamed it on the students, didn't like physics before taking not his lack of teaching ability He is good at physics but not good at his class and now it's one of my favorite classes. teaching physics Fantastic professor, hilarious, much more is on the WWW great and enthusiastic. Nice guy.

Last day to Withdraw: June 14

The Universe we are living in S Universe 6 Universe 5 <u>С</u> Universe 4 trang Universe 3 Universe 2 Universe 1

The highest grade



7 days to make your mind!

http://www.bu.edu/summer/calendar.shtml

Tuesday, May 29, 2018

Last day to drop without a 'W' grade (tuition charges remain after this date)

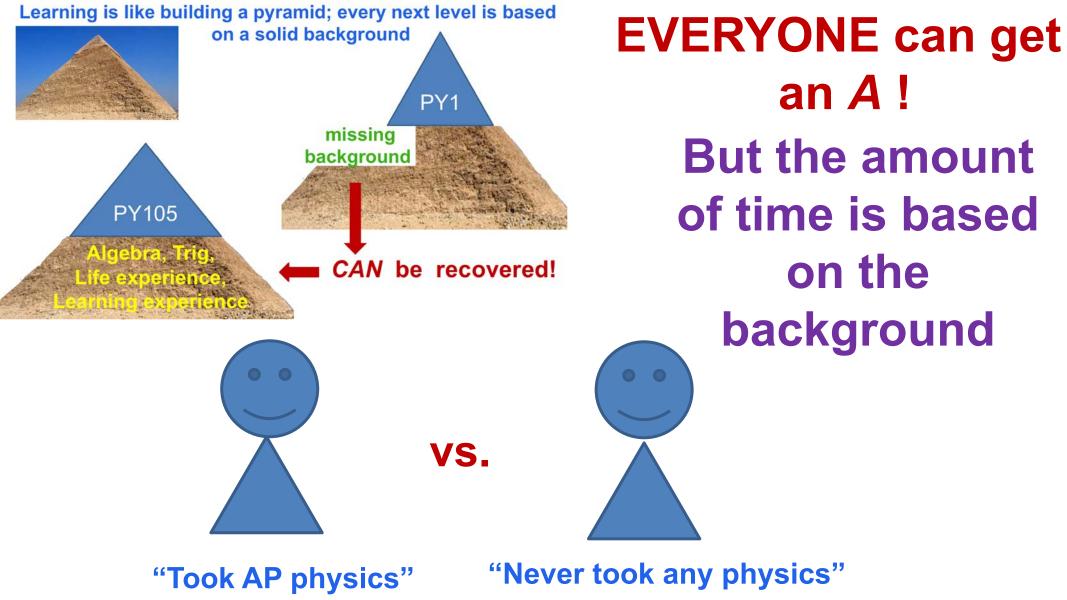
(class key: bu 1694 4391 1694 BU (just drop @bu.edu). 2. Institution name: BU. I need to create a WebAssign account. IMPORTANT: If you have already creat 3. As your password you need to use your BU student number in the form **Instructor:** Valentin Voroshilov accounts may cause you to lose wor U12345678. No dashes or spaces, must start from capital U.L. WebAssign for assistance or reset your **Boston University** As an email you have to use your BU email address (yourusername@bu.edu) I already have a WebAssign account.

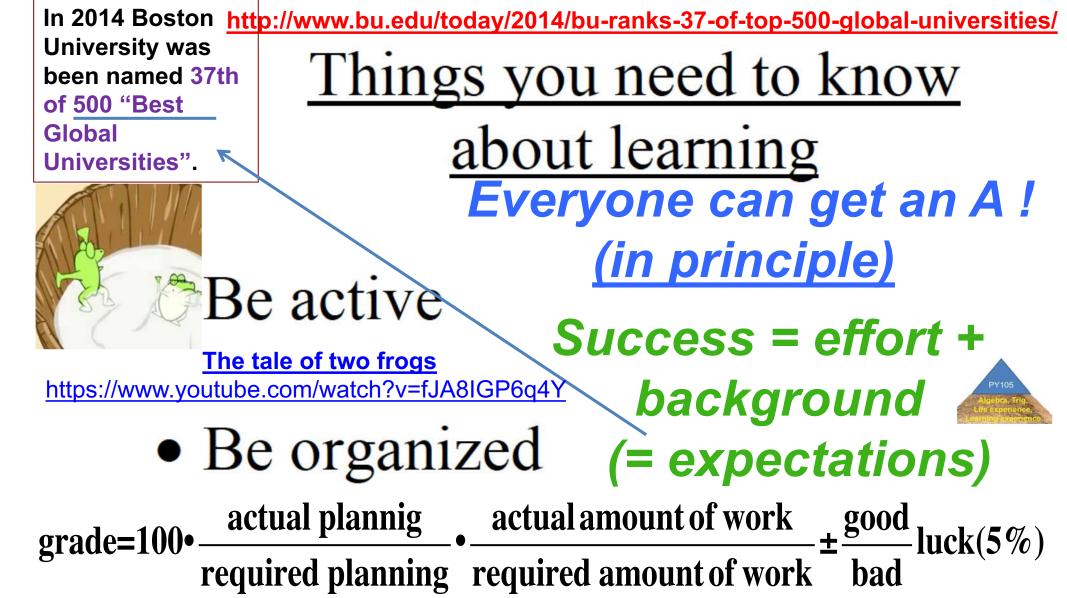
Cancel

CONTINUE

4391

YES, THIS IS MY CLASS


SUBMIT


LectureMCQ_L1 Question 2	"I am very good at physics"
On a scale from 1 3	1. Strongly disagree
(strongly disagree) to	(meaning, "I am very BAD at physics")
9 (strongly agree) how	2.
would you assess the	3. 4.
following statement?	5. More or less agree (meaning, "I'm OK")
"I am very good	6.
at physics! (I think)"	7. 8.
or select 0 if you are	9. Strongly agree (meaning, "I am very GOOD at
not sure.	physics")

1 Strongly disagree (meaning, "I am very bad at physics") 5.13% 4 O 2 6.41% 5 O 3 10.3% 8 0 4 8.97% 7 5 More or less agree (meaning, "I'm OK") 26.9% 21 0 6 10.3% 8 0 7 5.13% 4 0 8 1.28% 1 9 Strongly agree (meaning, "I am very good at physics") 2.56% 2 0 not sure what to say 23.1% 18

O 1 5.26% 4 \bigcirc 2 3.95% 3 3 0 13.2% 10 0 4 5.26% 4 O 5 32.9% 25 O 6 7.89% 6 O 7 11.8% 9 0 8 11.8% 9 9 none of the above 1.32% 1 0 I do not understand this question 6.58% 5

Learning is like building a pyramid; every next level is based on a solid background missing background PY105 Algebra, Trig, CAN be recovered! Life experience, Estated Hale (Extended Calco

ay		Schedule for PY105 - Summer 1 - 2018 (adjustments might be done over the course of the class; Lectures: M - F 8:30 - 10:00; IL sections: M, T, W, R 11 - 2:30, 2:30 - 6, 6 - 9:30)							
	Date	Chapter	Topic	IL Section Topic	HW Issued	Homework Due	Section		
		NO CLASS	NO CLASS NO CLASS						
	5/22	1.1 – 1.2, 3.2 –3.3	Introduction, Math, Measurement,	Collecting data (online)	HW 1		A2, A3, A4, A5		
T	23	2.1 - 2.4	Units, 1D, and 2D motion		(P1, 2, 3,4)		A2, A4, A5		
	24	3.1, 3.5	MCA, free fall	Introduction into Kinematics			A3		
	25	2.5 - 2.9, 3.4	Vectors, Relative motion,	NO IL sections	1		-		
	28			Holiday					
	29		Projectile motion, Newton's Laws			I	A3		
T	30	4.1 - 4.7, 5.1	Newton's Laws, Application of NL	2 D Kinematics			A2, A4, A5		
	31		Newton's Laws, Application of NL		1		A3		
(M)	6/1	7.1 – 7.9	Work Energy, Power	Newton's Laws	HW 2	HW 1	A2, A3, A5		
	4	F 1	9-20 10-20 ISE D	N 01 H - C - A					
	5	Exam 1 8.1 – 8.3	8:30 – 10:30 am; LSE B0 Conservation of energy	No IL sections	1		_		
7	6	8.1 - 8.3	Impulse and Momentum, Law of	No 1L sections	(P1, 2, 3, 4)		A2, A4, A5		
_	_	8.4 – 8.6	conservation of linear momentum,	Work and Energy	(-1, -, -, -,				
	7	0.1	Collisions	Work and Energy			A3		
	8	6.2 - 6.4	Circular Motion	No IL sections	1				
				T			10.11.15		
l .	11		Torque, Equilibrium, Rotational kinematics and dynamics, Rotational Inertia, Rotational KE	Collisions and Center of			A2, A4, A5		
,	12	6.1, 10.1 – 10.5, 9.1 – 9.6		Mass	-		A3		
	13	9.1 - 9.6	Angular Momentum, Rolling	Torque and Rotational Dynamics			A2, A4, A5		
	14 15	16.1 – 16.5	Hook's law, Properties of SHM	No IL sections	HW 3	HW 2	A3		
	15	10.1 – 10.5	Hook's law, Properties of SHM	No 1L sections	HW 3	HW Z			
1	18	Exam 2	8:30 - 10:30 am; LSE B	01 (No IL sections)					
	19	16. 6 - 16.9	Hook's law, Properties of SHM	No IL sections					
I	20	11.1 - 11.7	Statics and Dynamics of Fluids	SHM	(P1, 2, 3, 4)		A2, A4, A5		
	21	12.1 – 12.3	Statics and Dynamics of Fluids	SHIVI			A3		
	22	6.5 - 6.6	Gravity, Orbital Motion	No IL sections					
_	25		Temperature and Heat, Expansion,	T	Г	Г	A2, A4, A5		
_		13.1, 13.2, 14.1 -	Heat Capacity, Heat Balance	Fluids					
	26	14.7	Equation	13403CV755F]		A3		
T	27	13.3 - 13.4	Ideal Gases	Temperature and Heat and			A2, A4, A5		
	28	15.1 – 15.6	Heat Engines	Ideal Gases			A3		
	29	Exam 3	8:30 - 10:30 am; LSE B01/ Online IL section: IL11			HW 3	A 2,3,4,5		

Small corrections are possible

Do not read this slide

The components of the course:

Lectures

Investigative Laboratories

<u>HW</u>

Exams

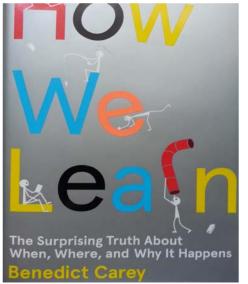
Intense course!

Don't mix with other intense courses

Exam 1: LSE B01 8:30 – 10:30 June 4

Exam 2: LSE B01 8:30 – 10:30 June 18

Exam 3: LSE B01 8:30 - 10:30 June 29


<u>during a lecture: (20—60—20)</u>

Taking notes = writing down what needs further clarification!

Participating (drawing, writing, asking, etc.) = activating brain cells!

Fundamental Laws of TeachOlogy

What Does It Mean "Thinking as a Physicists"?

Cognisity.How/2018/02/thinkphy.html

begin **TODAY**. A usual lab room is SCI 134, but sometime labs may be held in different rooms. **Today** all you need is the

Unit sections:

access to the **Internet**.

IL1, and IL11 are mandatory; they require an access to the Internet.

From the *other* 9 IL (from IL2 to IL 10) any 7 must be finished to graduate from

the course. From the other 9 IL (from IL2 to IL 10) 8 best grades will be

accounted toward the final grade.

II.2: Introduction into Kinematics IL3: 2D Kinematics IL4: Newton's Laws IL5: Work and Energy IL6: Collisions and Center of Mass

 \mathbf{IL}

IL1: Collecting data (online)

Days

May 22

May 23, 24

May 29, 30

May31,

June 1

(F=M)

June 6, 7

June 11, 12

June 13, 14

June 20, 21

June 25, 26

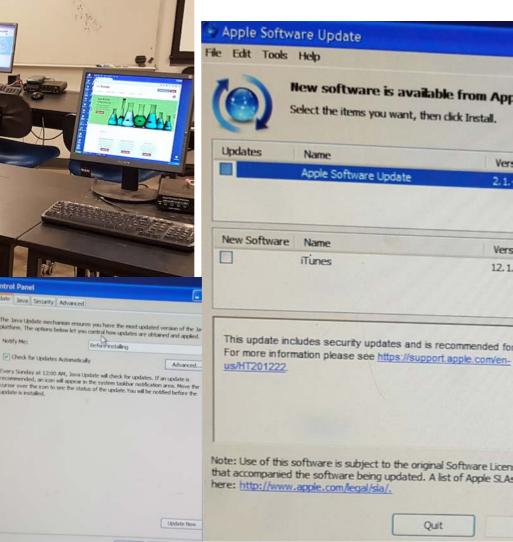
June 27, 28

June 29

IL7: Torque and Rotational Dynamics IL8: SHM IL9: Fluids IL10: Temperature and Heat and Ideal Gases

IL11: Online: Collecting data

Room location


Check for Updates Automatically

Every Sunday at 12:00 AM, Java Update will check for updates. If an update is

OK Cancel

Please, do not use computers for anything not related to your study, Thank you.

Investigative laboratories

Lectures: up to 5 lectures are allowed to be missed due to unforeseen circumstances.

IL2 – IL9: 8 best grades will be used.

Homework: To pass the course a student must have at least 50% of the maximum homework grade.

All homework assignments will be accounted for the final grade.

Recommended timeline Solving on average 3 or 4 problems EVERY day. for HW1 P1- 4.

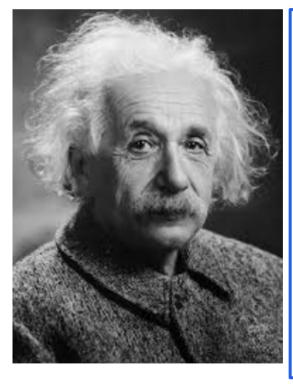
In addition to Lectures, labs, notes => HW, notes ~ 3 hours a day (on average)

5/22	5/23	5/24	5/25-26	5/28	5/30	5/31-6/1	6/2-3
HW1	HW1	HW1	HW1P1	HW1P2	HW1P2	HW1P2	HW1P3
P1	P1	P1	#8,9,10	#4,5,6,7	#8,9,10	#11,12	#5,6,7
#1,2	#3,4	#5,6,7	HW1P2			HW1P3	HW1P4
			#1,2,3			#1,2,3,4	#1,2,3,4
							<u> </u>

https://www.umflint.edu/advising/survivi ng college.htm

for more reading

http://college.usatoday.com/2014/08/18/ how-much-do-you-study-apparently-17-


6/2 11:pm HW1P1 deadline: HW1P3,4 deadline:

HW1P2 deadline:

5/31 11:pm **.6/3 10:pm**

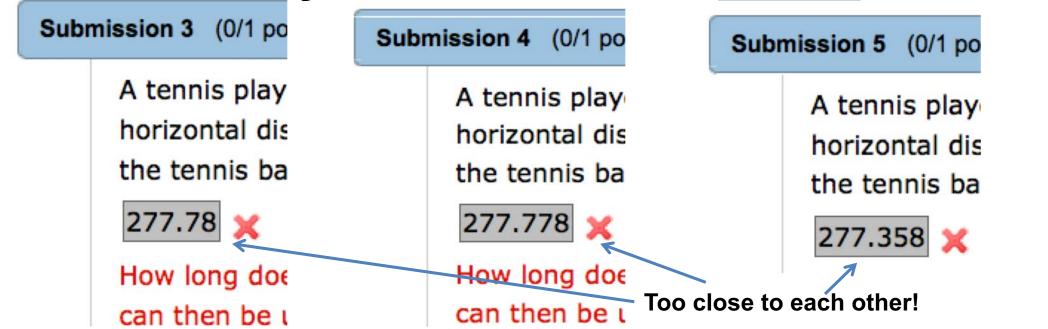
in special cases HW deadline can be moved

hours-a-week-is-the-norm/

To solve a problem **EVERYONE** goes through the same set of steps.

- 1.Reading
- 2.Visualizing
- 3.Describing in a text
- 4.Describing in a picture
- 5.Relating to a similar situation
- 6. Comparing to a similar situation
- 7. Selecting relevant (mathematical) description (definitions or laws)

Don't READ Some helpful questions for solving physics problems This slide! (page # 12)


- 1. What objects are involved? What processes are happening to them? (use your imagination make a picture showing the objects and the processes they are involved into)
- 2. What properties of the objects and the processes might be important?
- 3. What physical quantities should be used for describing those properties, what connections might be important?
- 5. What laws or definitions should be used to describe important connections mathematically?
- 6. How can I solve my equations mathematically?
- 8. Does it make a sense?
- 9. Could I solve a similar problem again? How much time would it take? Who could help me (if I need it)?

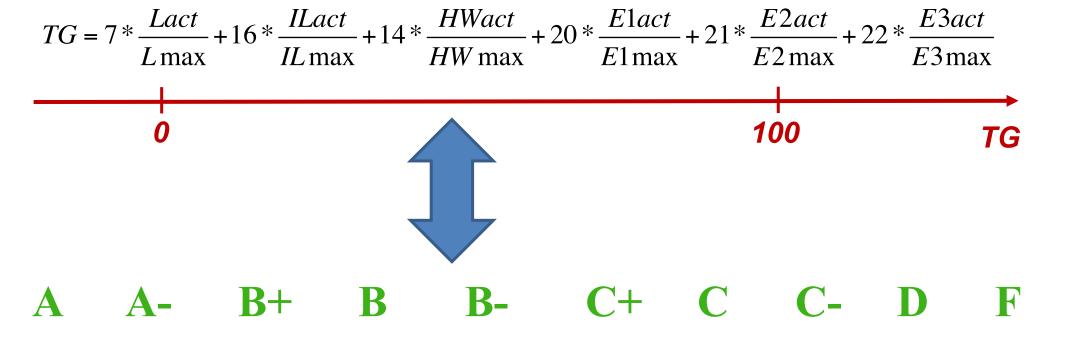
More at: http://www.Cognisity.How/2018/02/Algorithm.html

All homework assignments will be delivered via webassign.net => 4 is your magic number Keep 4 digits after decimal point.

After 4th insufficient submission - attend OH.

Use your submissions <u>wisely!</u>

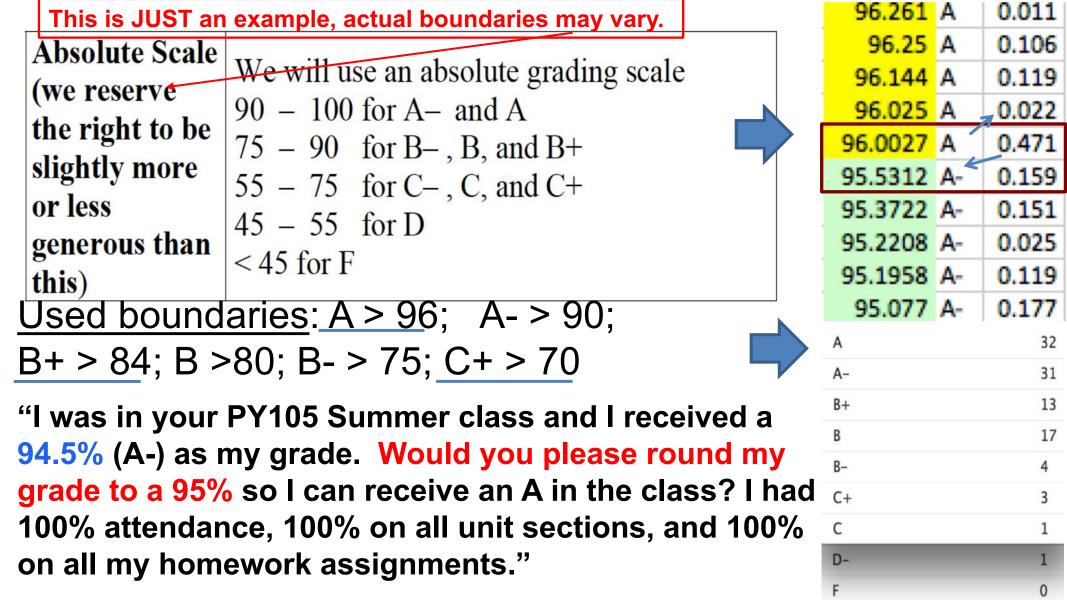
Office Hours (SCI 121; no OH on a day of an exam) PY 105 W F М R 10:00-10:30 10:30-11:00 11:00-11:30 11:30-12:00 12:00-12:30 The actual OH 12:30-1:00 1:00-1:30 schedule is 1:30-2:00 posted on BB 2:00-2:30 2:30-3:00 3:00-3:30 3:30-4:00 4:00-4:30 4:30-5:00 5:00-5:30

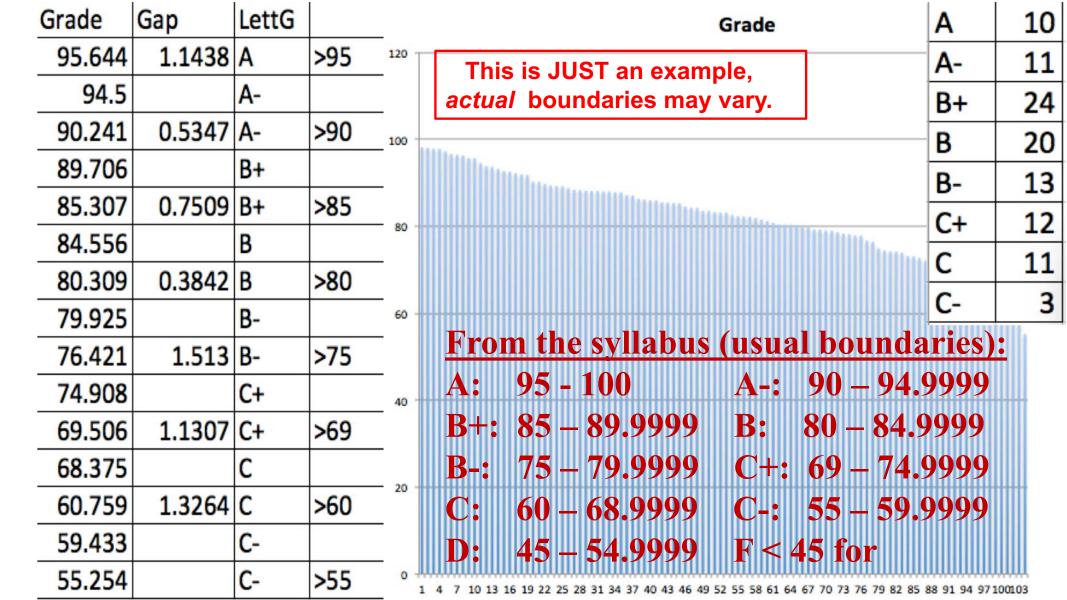

The components of the grade:

21 %

NO MAKEUPS!
BU policy

http://www.bu.edu/academics/ca s/policies/


$$TG = 7 * \frac{Lact}{L \max} + 16 * \frac{ILact}{IL \max} + 14 * \frac{HWact}{HW \max} + 20 * \frac{E1act}{E1 \max} + 21 * \frac{E2act}{E2 \max} + 22 * \frac{E3act}{E3 \max}$$



For ANY boundary someone is ALWAYS close to it!

Decimals matter!

"I am 0.3 points away from a 90"

This is JUST an example actual boundaries may vary.	A >	95	I .	40	TotalGrade	Edited
"My estimated fina			Α	10	Statistics	Edited
grade on Blackboa	ard is A->	90	A-	11		
a 74.43, and when	B+ >	85	D.		Count	104
doubted checked t	- -	00	B+	24	Minimum Value	55.25
		80	В	20	Maximum Value	98.15
calculations using	tne -			20	Range	42.90
method you descr	ibed I B- >	75	B-	13	Average	81.90
got the same thing	C . S	CO	C+	12	Median	83.15
more or less (74.50	C+ >	09	CT	12	Standard Deviation	10.04
like to ask if there	· •	60	С	11	Grade Distrib	EOteO O
anything, anyth	ning C- >	55	C-	3	Greater than 100	0
at all, that I can	90 - 100	21				
· · · · · · · · · · · · · · · · · · ·	80 - 89	44				
so as to make the c	70 - 79	25				
imagine you round	60 - 69	11				
number." $TG = 7 * \frac{Lact}{L \max} + 16 *$	$\frac{ILact}{IL\max} + 14 * \frac{HWact}{HW\max} + 20$	$0*\frac{E1act}{E1\max} + 2$	$1*\frac{E2act}{E2\max}$	$+22*\frac{E3act}{E3\max}$	50 - 59	3

"I feel that given all of this my final grade should be an A-, which is what I expected when you said that doing the surveys at the end would potentially move "on the fence" grades one way or the other. I am 0.3 points away from a 90, which I consider an "in between" or "on the fence" and given the clear effort I put into this class, I think my grade should reflect that. I am asking you to move my grade up to an A-, which I feel is a reasonable ask given the reasons Histed **before**" $TG = 7 * \frac{Lact}{L \max} + 16 * \frac{ILact}{IL \max} + 14 * \frac{HWact}{HW \max} + 20 * \frac{E1act}{E1 \max} + 21 * \frac{E2act}{E2 \max} + 22 * \frac{E3act}{E3 \max}$

Meb Keflezighi

Portland, Ore.

Boulder, Colo.

Uitenhage, South Africa

Tadese Tola

Vitaliy Shafar

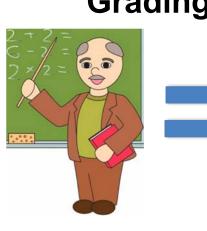
Matt Tegenkamp

Jeffrey Eggleston

Lusapho April

San Diego 2:12:42 39 2:13:35 Addis Ababa, Ethiopia 27 2:13:52 Lutsk, Ukraine 33

33


30

32

2:13:52

2:14:17

2:16:25

The components of the grade:

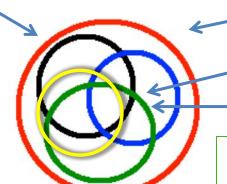
lectures – 7 %;

IL/units - 16 %;

HW - 14 % The best strategy is NOT losing any points!

TG =
$$7*\frac{Lact}{L max} + 16*\frac{DLact}{IL max} + 14*\frac{HWact}{HW max} + 20*\frac{E1act}{E1 max} + 21*\frac{E2act}{E2 max} + 22*\frac{E3act}{E3 max}$$

7 + 16 + 14 = 37 % of "easy money"


Exam problems

Train yourself in recognition!

Some helpful questions for solving physics problems (page # 12)

- What objects are involved? What processes are happening to them? (use your imagination - make a picture showing the objects and the processes they are involved into)
- 2. What properties of the objects and the processes might be important?
- 3. What physical quantities should be used for describing those properties, what connections might be important?
- 5. What laws or definitions should be used to describe important connections mathematically?
- 6. How can I solve my equations mathematically?
- 8. Does it make a sense?
- 9. Could I solve a similar problem again? How much time would it take? Who could help me (if I need it)?

http://teachology.xyz/general_algorithm.htm

similar

Problems:

- **1.HW**
- 2.Lectures
- 3.Units (IL)

Practice HW

Practice exams

After a lecture: (videos, notes)

- Clarification = HW (solving + reflecting)
- + IL (doing + reflecting)
- + office hours, piazza (collaborating)

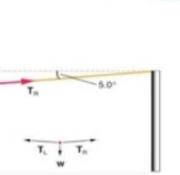
Demystifying Physics

WA: L1, Question 3: Select one word which fits the best for finishing this statement.

Physics is _____

Strange
 Done
 Simple
 Boring
 Old
 Fun
 Mysterious
 Hard
 Soft

- 1 6.58% 5 ○ 2
- 2.63% 2
- 32.63%2
- 0 4 5.26% 4
- 5 6.58% 5
- 6 10.5% 8
- 7 32.9% 25
- 8
 31.6% 24
- 9 none of the above1.32%1


"Can't learn physics without a big math" Demystrying Physics

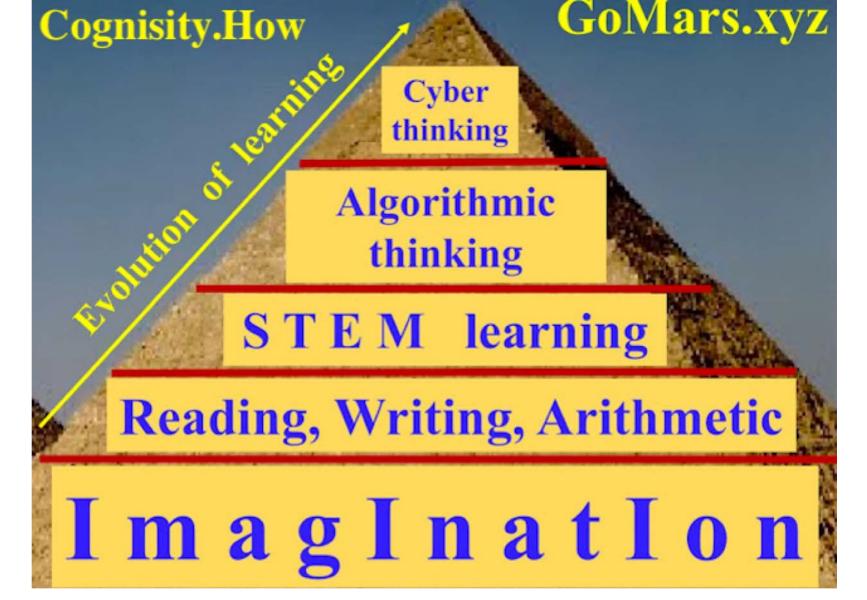
The most common *myth* about physics:

- Be active
- Be organized

Physics is HARD

(Picture is from College Physics, by OpenStax College)

Not everyone can handle a dozen of balls, but everyone can handle one or two. Not everyone can become a Nobel laureate in physics,


but everyone can learn how to solve <u>typical</u> physics problems (it's not genetic, it's a <u>skill</u>); there is a <u>strategy</u> for that.

Things you need to know about Physics: The easiest

Learning Physics involves:
 for every problem draw a picture)

- Mathematics (Use the math test: IL1)
- Constant use of the trial and error method (Use the steps listed in the algorithm)
- Collaboration (study groups, piazza.com)

Rod Cross

Physics

Softball

of Baseball &

Biophysical Journal **PH**VSICS

Biology STREET

> Methods of physics

Medical physics (also called biomedical physics, medical biophysics or applied physics in medicine) is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare. Medical physics departments may be found in hospitals or universities.

Medicine

- Mission statement of Medical Physicists
- 2 Medical biophysics and biomedical physics
- 3 Areas of speciality
 - 3.1 Medical imaging physics
 - 3.2 Radiation therapeutic physics
 - 3.3 Nuclear medicine physics
 - 3.4 Health physics
- 3.5 Clinical audiology physics
- 3.6 Laser medicine
- 3.7 Medical optics

Do not read this slide

2016 Massachusetts Science and Technology/Engineering **Curriculum Framework** Table of Contents

Hadr School Overview of Science and Empireorine Practice

Too intense, without proper background

Has no much of logical connections within or with **High School Intro-**

Fourth Nine-Weeks Density, Buoyancy Waves, Electricity

FACT SHEET: President Obama

Tentative Schedule:

Second Nine-Weeks

Work and Energy

Third Nine-Weeks

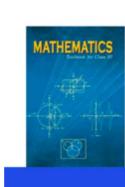
Rotational Motion Gravity and Circular Motion

Temperature and Heat Thermodynamics

Momentum

Math review (Scientific Nota)

First Nine-Weeks


Scientific Method

Graphing

Cognisity.Gow/2017/01/dorrSTEM.html

ductory Physics

Everyone who learns physics can learn coding. The opposite ???

Ability to set testing procedures between a nature and a math

Announces Computer Science For All Initiative Computer

Coding = algorithmization (reasoning) + programming language (memorizing)

Physics is a science

Observations:

passive and active (experiments)

Objects; properties of objects Processes; properties of processes

Physics is a science

Observations:

passive and active (experiments)

Objects; properties of objects Processes; properties of processes

Names; Terms

language!

Concepts, definitions, and	l laws/relations to learn	properties of PM	properties of vertical UCM		rotational kineti
week 1	linear motion (LM)	range, maximum height, flight time	properties of vertical CM		rotational impu
a scalar (the first topic of test 1)	position	week 2	**************************************		rotational work
a vector	position vector	inertia	kinetic energy		work-kinetic en
a component	displacement	force	work	week 4	NETWORK OF STATE
a right triangle	distance	list of forces	work-force connection	a solid object	rolling
sin, cos, tan	elapsed time	Newton's 1st law	force-position graph	rotational motion	rolling without:
the Pythagorean theorem	velocity	Newton's 2 nd law	power	axis of rotation	special cases of
Coordinate system	speed	Newton's 3 rd law	power-force connection	an arc	Atwood's machi
Cartesian coordinate system	average velocity	principle of superposition of forces	work-kinetic energy theorem	angular displacement	law of conserva
an axis	average speed	FBD	conservative force	angular velocity	law of conserva
an origin	instantaneous velocity		potential energy	angular acceleration	last topic of tes
a coordinate	motion equation	force of gravity vs. apparent weight	gravitational potential energy	degrees vs. radians	
Cartesian vector components	motion diagram	weightless	mechanical energy	connections RM to LM	week 5
linear equation	position graph	kinetic friction vs. static friction	non-conservative force		gravity (the first
quadratic equation	velocity graph	coefficient of friction	law of conservation of energy	torque	force of gravity
quadratic formula	meaning of the slope	a pulley		lever arm	Newton's law of
a unit	meaning of the area	an ideal string	impulse of a force	calculating torque	principle of supi
fundamental (base) units	constant velocity motion (CVM)	an Atwood's machine	linear momentum	rotational inertia (RI)	gravitational fie
SI system of units	properties of CVM	methods for applying Newton's laws (the last	force-tine graph	Newton's 1" law for RM	gravitational po
unit conversion		topic of test 1)	closed (isolated) system	Newson's 2" law for RM	bound system
conversion factor	acceleration		law of conservation of linear momentum		energy of a bou
prefix words	average acceleration	week 3		static equilibrium	orbits
etalon	instantaneous acceleration	circular motion (CM) (the first topic of test 2)	a collision	conditions for static equilibrium	escape speed
measurement	motion with constant acceleration (MCA)	circumference	elasticity	solving problems on static equilibrium	
significant figures	properties of MCA	radius	four types of collisions		stable equilibriu
		uniform circular motion (UCM)	methods for solving collision problems	Table of RI	unstable equilib
motion	relative motion	period		parallel axis theorem	restoring force
1 D motion	velocity addition	frequency	center of mass (COM)	applications of Newton's laws for RM	oscillations
2 D motion	"crossing the river"	centripetal acceleration	calculating COM		small oscillation
translational motion	projectile motion (PM)	properties of horizontal UCM		angular momentum	Hooke's law
			3		
	Newton's 2 nd law for SHM	solving buoyancy problems	phase transition	degree of freedom	
	simple harmonic motion (SHM)	security assistants biogramics	critical temperature	the equipartition theorem	not even try
	SHM for horizontal spring	fluid dynamics	latent heat (capacity)	monatomic, diatomic, polyatomic gas	
	analogy between SHM and UCM	an ideal fluid	method for solving thermal equilibrium		
	motion equation for SHM	streamline flow	problems	to r	ead
	S, V, A graphs for SHM	an incompressible fluid	convection, thermal radiation	the first law of thermodynamics	
	period	mass flow rate	thermal conduction	work done by gas	slide
	frequency	volume flow rate	thermal conductivity	calculating specific heat (Cy, Cp)	SIIUE
	angular frequency	the continuity equation		isothermal process	
	amplitude	the Bernoulli's equation	the ideal gas	adiabatic process	
	elastic potential energy	solving fluid dynamics problems	absolute temperature	thermodynamic cycle	

What is the Missions of Education as a **Human Practice?**

http://www.cogn <u>isity.how/2018/0</u> 1/mission.html

What is the Missions of Higher **Education?**

http://www.cogni sity.how/2018/02/ 3Myths.html

Taking a physics course Becoming a physician When study physics, To become a doctor, students have to memorize students have to memorize definitions and laws. a lot of stuff (way more than when taking a physics course), for example names of all mussels, bones, diseases, and treatments. When solving a physics A doctor has to recognize a problem students have to be disease, i.e. make a able to recognize the diagnosis. underling model. For solving a physics A doctor has to formulate problem students have to the course of treatment for formulate the sequence of treating a disease. steps leading to the solution. If the treatment did not If the proposed solution of a

work a doctor has to reflect

on possible reasons for that

and to offer a correction.

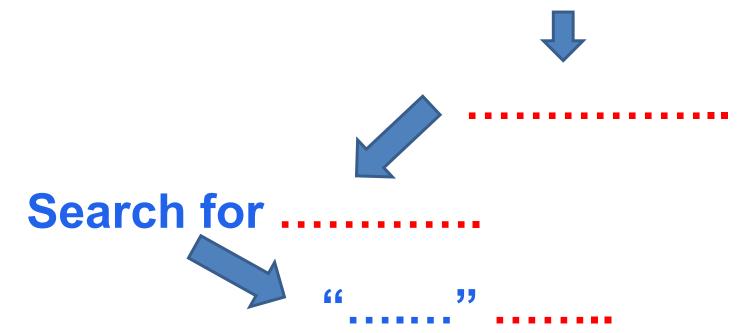
problem did not work, a

own work and to make a

approach.

student has to reflect on the

correction, and to try a new



Physics is a science

The missions of a science is ...

Physics is a science

The missions of a science is ...

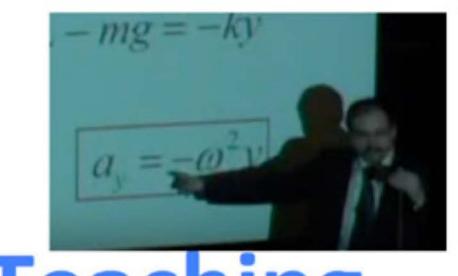
Predicting!

Search for patterns

"mining" data

Physics = Science

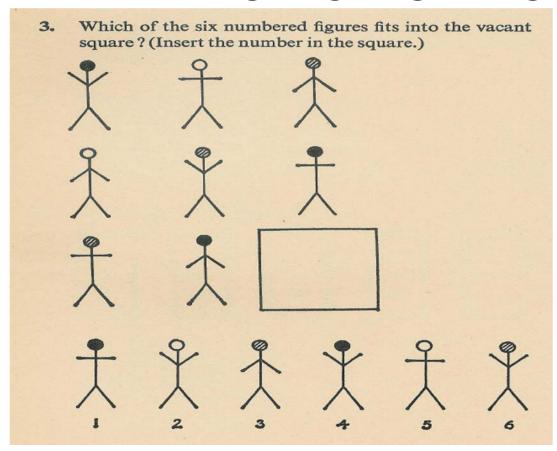
- 1. Observations
 - differentiating
 - naming
 - classifying
- 2. Analysis
 - patterns
 - correlations
- 3. Predictions
- 4. Tests


is an internally consistent body of knowledge based on the scrupulous and logical analysis of a vast amount of data."

Mathematics

Physics is a science.

No patterns =>


Teaching No data => hysics is

Patterns are everywhere!

1 1 2 3 5 8 13 21 ??

Physics (as EVERY science) is based on patterns!

In physics patterns are based on

1. Primary <u>Definitions</u>

- 2. Primary/Fundamental <u>Laws</u>
- 3. Secondary connections (Equations; Algorithms)

In physics patterns are based on

- 1. Primary Definitions
- A commonly accepted agreement
- 2. Primary Laws

 An objective connection
- 3. Secondary connections (Equations; Algorithms)

This week's topics

What is Physics?

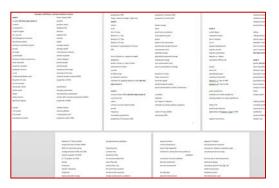
Kinematics of 1 – D motion

Kinematics of 2 – D motion

Topics for the first two weeks (you do not need to read this slide!) a scalar, a vector, a component, a right triangle, sin, cos, tan, the Pythagorean theorem, Coordinate system, Cartesian coordinate system, an axis, an origin, a coordinate, Cartesian vector components, linear equation, quadratic equation, quadratic formula, a unit, fundamental (base) units, SI system of units, unit conversion, conversion factor, prefix words, etalon/standard, measurement, Motion, 1 D motion, 2 D motion, translational motion, linear motion (LM), position, position vector, displacement, distance, elapsed time, velocity, speed, average velocity, average speed, instantaneous velocity, motion equation, motion diagram, position graph, velocity graph, meaning of the slope, meaning of the area, constant velocity motion (CVM), properties of CVM, acceleration, average acceleration, instantaneous acceleration, motion with constant acceleration (MCA), properties of MCA, relative motion, velocity addition, "crossing the river", projectile motion (PM), properties of PM, range, maximum height, flight time, Force, N2L. (develop your dictionary – memorize definitions)

Physics = science = applied Mathematics

We need a bridge between verbal and numerical description of the world.


Observations

- differentiating
- naming
- classifying

Physics is a science

Observations:

passive and active (experiments)

Objects; properties of objects

language!

Processes; properties of processes

Names;

Measurable parameters;

Variables; values

Connections;

Measurement

Measurement (metrology):

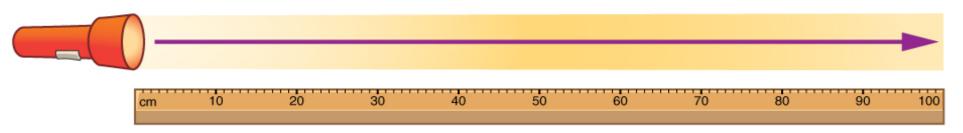
- Set of operations having the object of determining a value of a quantity.
- => "Assigning a number"

Measurement, Standard (Etalon, Prototype), Unit

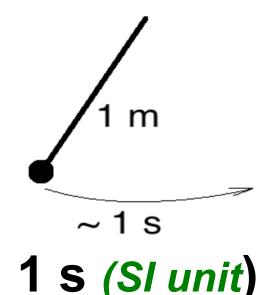
Measurement (in physics) is assigning a numerical value to a specific quantity by comparing with the standard (a.k.a. etalon, prototype), of the quantity.

Physics

A double-pan mechanical balance is used to compare different masses. When the bar that connects the two pans is horizontal, then the masses in both pans are equal. The "known masses" are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams.



1 m = one ten-millionth of the length of the meridian through Paris from pole to the equator (1791).


The standard platinum-iridium meter bar.

Light travels a distance of 1 meter in 1/299,792,458 seconds

The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum.

1 m (SI unit)

An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall! (credit: Steve Jurvetson)

The units for <i>length, mass,</i>	L (length)	m
and time (as well as a few	t (time)	S
others), are regarded as	m (mass)	kg
base units (there is a	A (area)	m^2
standard for each base	W (width)	m
	v (velocity)	m/s
unit). These units are used	F (force)	$kg m/s^2$
in combination to define	E (energy)	$\log m^2/s^2$
additional units for other	V (volume)	m^3
important physical	p (momentum)	kg m/s
quantities such as force	a (acceleration)	m/s^2
and energy.	ρ (density)	kg/m^3

CONVERSION FACTORS

- $1 \text{ m} = 100 \text{ cm}; \qquad 1 \text{ mm} = 0.001 \text{ m}$
- 5280 feet = 1 mile; 1 mi = 1600 m

- 3.281 feet = 1 meter; 1 year = 365 days;
- 3600 seconds = 1 hour;
- 1 kg = 1000 g; 1 ton = 1000 kg. (do not know a conversion factor? Google it!)

```
1 m = 100 cm; 1 mm = 0.001 m

5280 feet = 1 mile; 1 mi = 1600 m

3.281 feet = 1 meter; 1 year = 365 days;

3600 seconds = 1 hour;
```

1 kg = 1000 g; 1 ton = 1000 kg.

54 mi/h = ?? m/s

54 mi/h =

$$1 \text{ m} = 100 \text{ cm}$$
; $1 \text{ mm} \neq 0.001 \text{ m}$ 54 mi/h = ?? m/s

$$1 \text{ kg} = 1000 \text{ g}$$
; $1 \text{ ton} = 1000 \text{ kg}$.

54 mi/h =
$$54 \cdot \frac{1 \cdot m}{1 \cdot m} = 54 \cdot \frac{1700 \text{ m}}{3600 \text{ s}} = 54 \cdot \frac{1700 \text{ m}}{3600 \text{ s}} = 54 \cdot \frac{m}{5}$$

"This waterfall is 104851 deep".

What is missing in the sentence above?

Victoria Falls is a 5,600-foot wide waterfall located on Zambezi River in Zimbabwe.

This waterfall is 104851 mm deep.

We need a UNIT!

Victoria Falls is a 5,600-foot wide waterfall located on Zambezi River in Zimbabwe.



About 3,810 results (0.67 seconds)

Millimeters to Feet conversion

www.metric-conversions.org/.../millimeters-to-feet.ht... ▼ Metric Conversions ▼ Millimeters to Feet (mm to ft) conversion calculator for Length conversions with additional tables and formulas.

Millimeters to Feet (mm to ft) conversion calculator - RapidTa... www.rapidtables.com → Conversion → Length conversion ▼

Millimeters (mm) to feet (ft) conversion calculator and how to convert.

This waterfall is 104851 mm deep.

We need a UNIT!

Victoria Falls is a 5,600-foot wide waterfall located on Zambezi River in Zimbabwe.

Units used to measure THE SAME property form a dimension.

104851 mm = 344 feet = 105 m = 115 yard = 0.1 km = 0.06 mi = 4128 inch

L = [length dimension]

T = [time dimension]

M = [mass dimension]

Dimensional Analysis

A correct equation always MUST have the same units on both sides of the equation. (FYI: [a number] = 1)

```
[2]*[A] = [B]/[4] => ([2] = 1) 1*[A] = [B]/1
=> [A] = [B] Both sides MSUT have the same unit
```

We CANNOT <u>add</u> different units [...] reads as "dimension/unit of ..."

2*A = B/4 => [2*A] = [B/4] =>

Find the unit of Kinetic Energy using SI units.

$$K = \frac{mv^2}{2}$$

m = mass; v - speed

Find the unit of Kinetic Energy using SI units.

$$K = \frac{mv^2}{2}$$

m = mass; v - speed

$$\begin{bmatrix} K \end{bmatrix} = \frac{Ky \cdot \left(\frac{M}{3}\right)^2}{J \cdot \frac{3J^2}{3J}} = \frac{Ky \cdot M^2}{3J}$$

$$\begin{bmatrix} KJ = \frac{CmJ[v]^2}{E2J} \\ = \frac{M \cdot \left[\frac{\zeta}{T}\right]^2}{4y \cdot \frac{y^2}{V_{12}}} \\ = \frac{M \cdot \left[\frac{\zeta}{T}\right]^2}{4y \cdot \frac{y^2}{V_{12$$

DIMENSIONAL ANALYSIS

```
[L] = length [M] = mass [T] = time
```

Is the following equation *possible*? Meaning – Is is dimensionally correct?

 $x = \frac{1}{2}vt^2$

- 1. Yes!
- 2. No! LectureMCQ_L1 Q4
- 0. I do not understand the question.

Dimensional analysis

$$[X] = \begin{cases} & \text{Jeneral} \\ & \text{J} \end{cases}$$

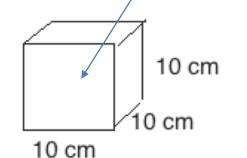
$$[X] = \begin{cases} & \text{M} \\ & \text{J} \end{cases}$$

$$[X] = \begin{cases} & \text{M} \\ & \text{M} \end{cases}$$

$$[X] = \begin{cases} & \text{M} \\ & \text{M} \end{cases}$$

$$[X] = \begin{cases} & \text{M} \\ & \text{M} \end{cases}$$

$$[X] = \begin{cases} & \text{M} \\ & \text{M} \end{cases}$$


$$x \stackrel{?}{=} \frac{1}{2} vt^2$$

DIMENSIONAL ANALYSIS

Is the following equation dimensionally correct?

LectureMCQ L1 Q5

- 1 meter = 3.281 feet
- 1 ft = 0.3048 m
- 1 mi = 1.609 km
 - 1 hp = 746 W
 - 1 liter = ? (SI) →

- 1. 1 cm
- 2. **10** cm
- 3. **100** cm
- 4. 1000 cm
- 5. **1 m**
- 6. **10** m
- 7. **100** m
- 8. **1000** m
- 9. None of the above

 \bigcirc 1 1.30% 1 2 2.60% 2 3 2.60% 2 4 22.1% 17 5 6.49% 5 6 10.4% 8 7 1.30% 1 8 3.90% 3 9 none of the above 49.4%

38