Lab 5 is in SCI 134 Please, login into webassing, locate LectureMCQ_L11 (PY105) and answer question 1 (but ONLY Q1!). Pleas sign in using the sign-in sheets on the bench. Thank you

Note: exam room change:
Exams 2,3 take place in STO B50

Good morning!
average Impulse and Momentum
$\overline{\boldsymbol{F}}_{\text {net }}=\mathrm{m} \overline{\overline{\boldsymbol{a}}}=m \frac{\Delta V}{\Delta t}=m \frac{V_{2}-V_{1}}{\Delta t}$
N2L
hence

$$
\overline{\boldsymbol{F}}_{\mathrm{net}} \Delta \mathrm{t}=\mathrm{m} \boldsymbol{v}_{2}-\mathrm{m} \boldsymbol{v}_{1}
$$

BTW: this is how Newton wrote it

Impulse of the force

$$
\boldsymbol{J}=\overline{\boldsymbol{F}}_{\text {net }} \Delta \mathrm{t}
$$

Linear Momentum of the object

$$
\boldsymbol{P}=\mathrm{m} \boldsymbol{v}
$$

The unit is the same: $\mathrm{N} \mathrm{s}=\mathrm{kg} * \mathrm{~m} / \mathrm{s}$
Relationships for impulse and momentum:
$\overline{\boldsymbol{J}}=\overline{\boldsymbol{F}}_{\text {net }} \Delta \mathrm{t}$

$$
\begin{gathered}
\boldsymbol{P}=\mathrm{m} \boldsymbol{v} \\
\overline{\boldsymbol{F}_{\mathrm{net}} \Delta \mathrm{t}}=\boldsymbol{P}_{2}-\boldsymbol{P}_{1}
\end{gathered}
$$

IMT =

$$
\vec{F}_{\text {NetAve }}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\vec{p}_{f}-\vec{p}_{i}}{\Delta t}
$$

$$
\vec{J}=\Delta \vec{p}-2 N L!
$$

Impulse - Momentum Theorem (IMT) "works" for any system

1-D case

$$
\begin{aligned}
& \vec{J}=\vec{F}_{\text {Net Ext Ave }} \Delta t \\
& \vec{p}_{2}=\vec{p}_{1}+\vec{J} \\
& F \neq \text { cost }=>? ?
\end{aligned}
$$

$$
F_{\text {xe }}=\frac{\partial}{\Delta t} \propto \quad \vec{p}_{2}=\vec{p}_{1}+\vec{J}
$$

$$
\vec{J}=\vec{F}_{\text {Net ExtAve }} \Delta t
$$

1-D case

$$
\boldsymbol{J}=\boldsymbol{F}_{\text {net }} \Delta \mathrm{t}=\text { The Area }
$$

$$
\Rightarrow \Delta \boldsymbol{P}=\text { The Area }
$$

The graph represents a force acing on a 3 kg box initially traveling to the left at the speed of $4 \mathrm{~m} / \mathrm{s}$. Find the final velocity of the box.

The graph represents a force acing on a 3 kg box initially traveling to the left at the speed of $4 \mathrm{~m} / \mathrm{s}$. Find the final velocity of the box.

$$
\begin{aligned}
& J=A_{\text {rem }}=A_{1}+A_{2}+A_{3}+A_{4} \\
& A_{1}=\frac{1}{2}(3+6) \cdot 4 \\
& A_{2}=(9-4) \cdot 4 \\
& A_{3}=\frac{1}{2}(10-1) \cdot 4
\end{aligned}
$$

$$
\begin{aligned}
& A_{4}=-\frac{1}{2}(12-10) \cdot 8=\frac{1}{2}(12-10) \cdot(-D) \\
& J=A_{1}+A_{2}+A_{3}+A_{4}=P_{1}-P_{i} \\
& V_{4}=\frac{P_{1}}{m}=\frac{R_{1}+J}{m}=\frac{m_{1}(-4)+J}{m}=-4+\frac{J}{3} ;
\end{aligned}
$$

A "happy" ball knocks a block down, a "sad" ball" does not.

Which ball exerts larger force on the block?

A) Happy

Webassign: L11 Q2
B) Sad
C) Forces are equal
D) Impossible to tell

Which ball exerts larger force on the block?
A) Нарру
B) Sad
C) Forces are equal
D) Impossible to tell

$$
F=\frac{\Delta P}{p f}=\frac{P_{f}-P_{r}}{o f}=\frac{m v_{f}-\left(-m\left|v_{i}\right|\right)}{o f}=\frac{m v_{1}-m v}{\partial f}=
$$

Which ball exerts larger force on the block?

$$
\begin{array}{c|c}
\hline \text { Happy Ball } & \text { Sad Ball } \\
\hline \boldsymbol{F}_{h} \Delta \mathrm{t}_{\mathrm{h}}=\boldsymbol{P}_{h 2}-\boldsymbol{P}_{h 1} & \boldsymbol{F}_{s} \Delta \mathrm{t}_{\mathrm{s}}=\boldsymbol{P}_{s 2}-\boldsymbol{P}_{s 1} \\
\hline \boldsymbol{F}_{h} \Delta \mathrm{t}_{\mathrm{h}}=-\mathbf{P}-\mathbf{P}=-2 \mathbf{P} & \boldsymbol{F}_{s} \Delta \mathrm{t}_{\mathrm{s}}=0-\mathbf{P}=-\mathbf{P} \\
\hline
\end{array}
$$

$\left|\boldsymbol{F}_{\boldsymbol{h}}\right|>\left|\boldsymbol{F}_{s}\right|$
Happy!

Applications!

Impulse - Momentum Theorem (IMT)
If (1) $\vec{F}_{\text {net }}=0 \quad$ or (2) $\Delta t \rightarrow 0 \quad \Rightarrow \vec{J}=0$!

A collision

A very SHORT contact time

SYSTEM SYSTEM SYSTEM SYSTEM

$$
0 \quad=>0=\vec{P}_{f}-\vec{P}_{i}
$$

$$
\Rightarrow \vec{P}_{f}=\vec{P}_{i}
$$

Law of conservation of linear momentum! (LCLM): when there are NO outside forces acting on the system, or they are canceled out (net external force equals zero), or the interaction takes almost no time.

 together").

An explosion = SupEC = an AIC "back in time"

Each V_{x} represents the x-component of a vector!!!!

Webassign: L11 Q3
Is mechanical
energy
conserved in this collision?

1) Yes
2) No
3) Impossible to answer

Is energy
conserved in this collision?

1) Yes
2) No
3) Impossible to answer

Is mechanical energy
conserved in this collision?

1) Yes
2) No
3) Impossible to answer

Is mechanical
energy
conserved in this collision?

1) Yes
2) No
3) Impossible to answer

Is energy
conserved in this collision?
Always

AIC

Two carts of different mass and velocity (see the picture) collide and got stuck to each other.

Find the velocity of the carts after the collision.

$$
\begin{gathered}
\vec{J}=\vec{F}_{\text {Net Ave }} \Delta t \\
\vec{F}_{\text {Net System }}=0
\end{gathered} \quad \vec{p}_{\text {System }}=\text { const }
$$

Assume the collision is absolutely inelastic

Two objects hit each other.
We call it a collision!
For any collision we ALWAYS can write the law of conservation of linear
momentum. $\mathrm{P}_{\text {system-before-collision }}=\mathrm{P}_{\text {after-before-collision }}$ or

$$
\mathrm{m}_{\mathrm{l}} \mathbf{v}_{1 \mathrm{bc}}+\mathrm{m}_{2} \mathbf{v}_{2 \mathrm{bc}}=\mathrm{m}_{1} \mathbf{v}_{1 \mathrm{ac}}+\mathrm{m}_{2} \mathbf{v}_{2 \mathrm{ac}}
$$

Now, with taking into a consideration the directions of the velocities, we can write (and the final velocities are the same!)

$$
2 * 2+0.4 *(-1)=2 \mathbf{v}_{\mathrm{ac}}+0.4 \mathbf{v}_{\mathrm{ac}}=2.4 \mathbf{v}_{\mathrm{ac}}
$$

That gives us $\mathrm{v}_{\mathrm{ac}}=3.6 / 2.4=1.5 \mathrm{~m} / \mathrm{s}$

Cont.

Two carts of different mass and velocity (see the picture) collide and got stuck to each other.

Find the velocity of the carts after the collision. => done

Find the loss of the kinetic energy (how much energy got transferred into a heat because of friction?)

$$
K E_{1 i}=\frac{2 \cdot 2^{2}}{2} \quad K E_{2 i}=\frac{0.4 \cdot 1^{2}}{2} ; \quad K E_{f}=\frac{(2+.4) \cdot 1 \cdot 5^{2}}{2}
$$

Cont.

ATC

Two carts of different mass and velocity (see the picture) collide and got stuck to each other.

Find the velocity of the carts after the collision. -> done

Find the loss of the kinetic energy (how much energy got transferred into a heat because of friction?)

Two objects hit each other.
We call it a collision!
For any collision we ALWAYS can write the law of conservation of linear
momentum. $\mathrm{P}_{\text {system-before-collision }}=\mathrm{P}_{\text {after-before-collision }}$ or

$$
\mathrm{m}_{1} \mathbf{V}_{1 \mathrm{bc}}+\mathrm{m}_{2} \mathbf{V}_{2 \mathrm{bc}}=\mathrm{m}_{1} \mathbf{V}_{1 \mathrm{ac}}+\mathrm{m}_{2} \mathbf{V}_{2 \mathrm{ac}}
$$

Now, with taking into a consideration the directions of the velocities, we can write (and the final velocities are the same!)

$$
2 * 2+0.4^{*}(-1)=2 \mathbf{v}_{\mathrm{ac}}+0.4 \mathbf{v}_{\mathrm{ac}}=2.4 \mathbf{v}_{\mathrm{ac}}
$$

That gives us $\mathrm{v}_{\mathrm{ac}}=3.6 / 2.4=1.5 \mathrm{~m} / \mathrm{s}$

The loss of the kinetic energy (which is equal to the work of friction) can be found as

$$
\Delta \mathrm{K}=\mathrm{W}_{\mathrm{fi}}=1 / 2\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}_{\mathrm{ac}}{ }^{2}-1 / 2 \mathrm{~m}_{1} \mathrm{v}_{\mathrm{lbc}}{ }^{2}-1 / 2 \mathrm{~m}_{2} \mathbf{v}_{2 \mathrm{bc}}{ }^{2}=-1.5 \mathrm{~J}
$$

An explosion, a separation = a Al collision "backwards"

Ice Skaters
Starting from rest, two skaters push off against each other on ice where friction is negligible

One is a $54-\mathrm{kg}$ woman and one is a $88-\mathrm{kg}$ man. The woman moves away with a speed of $+2.5 \mathrm{~m} / \mathrm{s}$. Find the recoil velocity of the man.

The completely similar solution you would have to use for solving the problems like the following:

The gun fires a bullet

A man (dog) iumps of the cart (or boat)

Or

A grenade explodes into two parts

Newton's Third Law

When one object exerts a force on a second object, the second object exerts a force of equal magnitude, in the opposite direction, on the first object.

Note that this law relates forces that are acting on different objects belonged to different free body diagrams.

VS.

General Case of Elastic Collision (a.k.a. AEC)

$\bullet \rightarrow \quad \omega \longrightarrow \longrightarrow$

$\vec{p}_{1 f}+\vec{p}_{2 f}=\vec{p}_{1 i}+\vec{p}_{2 i} \quad$ LCLM and

$$
M E_{1 f}+M E_{2 f}=M E_{1 i}+M E_{2 i}
$$

1-D; For a horizontal surface

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

LCME

(no friction)

Each v represents an
x - component of a vector!!!

$$
K E_{1 f}+K E_{2 f}=K E_{1 i}+K E_{2 i}
$$

No triction: $M E=$ cons

$$
\begin{aligned}
& \left\{\begin{array}{l}
m_{1} V_{1}+m_{2} v_{2}=m_{1} n_{1}+m_{2} u_{2} \\
\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2}=\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2} \\
U_{1}=\frac{m_{1} v_{1}+m_{2} v_{2}-m_{2} u_{2}}{m_{1}} \\
a^{2}-b^{2}=(a-b) \cdot(a+b)
\end{array}\right. \\
& \rightarrow \quad m_{1} v_{1}-m_{1} n_{1}=m_{2} n_{1}-m_{2} V_{2} \quad V_{1}+n_{1}=V_{2}+u_{2}
\end{aligned}
$$

1) $m_{1} V_{1}+m_{2} V_{2}=m_{1} u_{1}+m_{2} u_{2}$ and $d_{2} \frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2}=\frac{m_{1} u_{1}^{2}}{2}+\frac{m_{2} u_{2}^{2}}{2}$ $\Rightarrow V_{1}+U_{1}=u_{2}+V_{2} ; \quad W O R K$

From 1: $m_{1} V_{1}-m_{1} U_{1}=m_{2} u_{2}-m_{2} v_{2}$ or $m_{1}\left(V_{1}-u_{1}\right)=m_{2}\left(U_{2}-v_{2}\right)$
Fan 2:

$$
\begin{aligned}
& m_{1} v_{1}{ }^{2}-m_{1} u_{1}^{2}=m_{2} u_{2}{ }^{2}-m_{2} v_{2}{ }^{2} \\
& m_{1}\left(V_{1}{ }^{2}-U_{1}^{2}\right)=m_{2}\left(U_{2}^{2}-V_{2}^{2}\right) \\
& \text { (use: } a^{2}-b^{2}=(a-b)(a+b) \\
& m_{1}\left(v_{1}-u_{1}\right)\left(v_{1}+u_{1}\right)=\underbrace{m_{2}\left(u_{2}-v_{2}\right)\left(u_{2}+v_{2}\right)} \\
& \text { is equal to }\lceil\text { because of }]
\end{aligned}
$$

$$
v_{1}+u_{1}=u_{2}+v_{2}
$$

General Case of Elastic Collision (a.k.a. AEC)

$$
\begin{gathered}
\vec{p}_{1 f}+\vec{p}_{2 f}=\vec{p}_{1 i}+\vec{p}_{2 i} \quad \text { and } \\
M E_{1 f}+M E_{2 f}=M E_{1 i}+M E_{2 i}
\end{gathered}
$$

For a horizontal surface

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} u_{1}+m_{2} u_{2} \quad v_{1}+u_{1}=u_{2}+v_{2}
$$

Each u and v represents an x-component of a vector!!!

Special case

Find the velocity of the carts after the collision.

$$
\begin{aligned}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} u_{1}+m_{2} u_{2} \\
& \left\{\begin{array}{l}
2 \cdot 2+2 \cdot 0=2 \cdot u_{1}+2 \cdot u_{2} \\
2+u_{1}=u_{2}+0
\end{array}\right. \\
& v_{1}+u_{1}=u_{2}+v_{2} \\
& \Rightarrow \quad 2=u_{1}+u_{2} \\
& 2+u_{1}=u_{2} \\
& 2=u_{1}+2+n_{1} \\
& 2-2=2 \cdot u_{1} \\
& 0=u_{1}
\end{aligned}
$$

Ballistic Pendulum

A 10 gram bullet traveling at $100 \mathrm{~m} / \mathrm{s}$ hits resting 990 gram pendulum and stuck in it.

Ballistic Pendulum
A 10 gram bullet traveling at $100 \mathrm{~m} / \mathrm{s}$ hits resting $\mathbf{9 9 0}$ gram pendulum and stuck in it.

Ballistic Pendulum

How many different "mini-problems" are in this one problem?

Ballistic Pendulum

Ballistic Pendulum

Start | Before | After | End the collision | the collision |

1. Inelastic 2. (Abs)Elastic 3. Absolutely Inelastic
2. Super-elastic

Ballistic Pendulum

Start | Before | After | End 990 gram 10 gram at rest $100 \mathrm{~m} / \mathrm{s}$

2. No, it is wrong

Needs $\mathbf{W}_{\text {friction }} \neq 0$

Ballistic Pendulum

Ballistic Pendulum

Two pictures in the middle represent an absolutely inelastic collision

$$
m_{B} V_{B}=\left(m_{B}+M_{P}\right) V_{P+B} \quad \text { (Conservation of Momentum) }
$$

During the collision the mechanical energy of the system is not conserved!
But after it, E is conserved! $\quad \frac{\left(m_{B}+M_{P}\right) V_{P+B}{ }^{2}}{2}=\left(m_{B}+M_{P}\right) g h$

Ballistic Pendulum

But after it, E is conserved! $\quad \frac{\left(m_{B}+M_{P}\right) V_{P+B}{ }^{2}}{2}=\left(m_{B}+M_{P}\right) g h$

$h=0.05 \mathrm{~m}=5 \mathrm{~cm}$

Ballistic Pendulum

| Start \mid |
| :--- | :--- | :--- |

The two-part process: (1) collision

1) LCLM

(2) energy change 2) LCME

$$
\vec{J}=\vec{F}_{\text {Net Ave }} \Delta t
$$

or an explosion

2-D AIC (Absolutely Inelastic Collision "in reverse")

$$
\vec{p}_{1 f}+\vec{p}_{2 f}=\vec{p}_{1 i}+\vec{p}_{2 i}
$$

The center-of-mass is the point that moves as though all the mass of the system is concentrated there.

If we do not need to know the behavior of the individual parts of the system we can replace the system with a point-like object of the mass of the system and apply the Newton's II Law to it.

$$
\sum \vec{F}=M_{\text {system }} \bullet \vec{a}_{C M}
$$

all forces on the system
(= all external forces on the system)

