## Lab 7 is in SCI 136 (!)

Please, login into webassing, LectureMCQ_L15 (PY105) and answer question 1 (but ONLY Q1!).


Pleas sign in using the sign-in sheets on the bench. Thank you


Good morning!

Note: exam room change:
Exams 2, 3 take place in STO B50The lever-arm forthe torque of thetension forcerelative to the

# axis of 

 represented by the red segment \# 1. 2. 3. ...

## Webassign: L15 Q2

The lever-arm for the torque of the tension force relative to the hinge is represented by the red segment \# 1. 2. 3. ...


A heavy rod is suspended to a wall by the means of a horizontal string.



$$
M=500 \text { gram } \quad \Delta=40 \mathrm{~cm} \quad \theta=30^{\circ}
$$

Calculate: $F_{T}$ in the string; Contact Force

$$
\begin{array}{ll}
r_{1}=\phi \cdot F_{0}=\phi & \text { in the hinge } \\
r_{2}=\frac{+}{\Delta s} F_{T} \cdot l_{F_{T}} & r_{3}=-m y . l_{u y}=-5 \cdot 10 \cdot l_{m y}=5 \cdot l_{u y} \\
" c\left(( x ) " \text { or } { } ^ { n } c \left(w^{\circ}\right.\right. & { }^{n c(x)}
\end{array}
$$

$$
l_{F_{T}}=L ; \quad l_{\text {my }}=
$$

TBA: $r_{1}+\tau_{2}+r_{3}=0 \Rightarrow \phi+F_{T} \cdot l_{F_{T}}+-5 \cdot l_{r g}=0$

$$
F_{T}=5 \cdot \frac{l_{m p}}{l_{F_{T}}}=
$$

$$
\begin{aligned}
& H=l_{F_{T}}=\sum_{i}^{i} \cdot \sin 30=0.4 \cdot \frac{1}{2}=0.2 \mathrm{~m} \\
& F_{T}=5 \cdot \cos 10^{\circ} \mathrm{N} \\
& p F_{c y}+m y_{d}=0
\end{aligned}
$$

## Finding the center of gravity (CG) (old name for CofM)



$$
r_{\overline{1 u}}=p
$$

If this is CG the object must be in equilibrium

## Finding the center of gravity (CG)


$M_{\text {system }} g$

## Finding the center of gravity (CG)

 A 100 g meter stick has a 200 g weight attached to its end. Find the CG of the system (The size of the weight is greatly exaugurated).$$
\begin{aligned}
& \text { M } \gamma \\
& \mu g^{x}=\text { me }(5-5-x) \\
& 20 \mathrm{~d} \cdot \mathrm{x}=\mathrm{opp} \cdot\left(\frac{1}{2}-x\right) \\
& 2 x=\frac{1}{2}-x ; \quad 3 x=\frac{1}{2} ; x=\frac{1}{6}
\end{aligned}
$$

Finding the center of gravity (CG) A 100 g meter stick has a 200 g weight attached to its end. Find the CG of the system.

$M_{\text {system }} g$

Finding the center of gravity (CG)
A 100 g meter stick has a 200 g weight attached to its end. Find the CG of the system.

${ }^{M}{ }^{*} g$

$$
\begin{aligned}
& M^{*} g^{*} x-m^{*} g(0.5-x)=0 \\
& \quad \Rightarrow x=1 / 6 m
\end{aligned}
$$




## How to find the location of CG.



## Why do towers fall?


https://en.wikipedia.or g/wiki/Leaning Tower of Pisa


## The human spine A When one bends the upper

 body over so it is horizontal that can put a great deal of stress on the lumbrosacral disk, the disk separating the lowest vertebra from the tailbone (the sacrum). One has to be careful when picking something up!The force of gravity, mg, acting on the upper body (this is about $65 \%$ of the body weight).
The tension in the back muscles can be considered as a force T that acts at an angle of about $12^{\circ}$ to the horizontal when the upper body is horizontal.
The support force F from the tailbone, which also acts at a small angle measured from the horizontal.

$$
\begin{aligned}
& \text { Axis of } y=\int_{\mathrm{mg}}^{\mathrm{x}}+0.1 x \\
& \text { rotation }
\end{aligned}
$$

## At thee equilibrium

$$
\Sigma \tau=0
$$

T is applied about $10 \%$ further from the tailbone than the force of gravity is, so this gives:

$$
T \sin \theta *(x+0.1 x)=m g x
$$

And

$$
T=\frac{m g}{1.1 \sin \theta} \approx \frac{0.65 \cdot 60 \cdot 10}{1.1 \sin 12}=1706 \mathrm{~N}
$$

This is roughly the force pressing the one's spine!

## An equivalent of about 170 kg or 370 lb !

The moral of the story: when picking up stuff, use your legs, not your back; bend your legs instead of your back

## Not Equilibrium

$|F|$

The rod is initially at rest. Two forces are equal in magnitude but opposite to each other.

The net force is ZERO!
The net torque is NOT zero.
=> The rod is rotating! $\quad \alpha \neq 0!$

The rod is initially at rest. Two forces are equal in magnitude but opposite to $|F|$
each other.

The net force is ZERO!
The net torque is NOT zero.
$\Rightarrow$ The rod is rotating!



CCW
Positive torque
"out" $\bigodot$

$$
I_{\text {rod }}=\frac{1}{12} m L^{2}
$$

$$
I_{s p h}=\frac{2}{5} m r^{2} \quad I_{d i s c}=I_{c y l}=\frac{1}{2} m r^{2}
$$

$I=$ a moment of inertia, a.k.a. rotational inertia

## A disk with a ball.

$$
I_{\text {ring }}=m r^{2}
$$

$$
I=\Sigma m r^{2} \quad I_{s m a l l m a s s}=m r^{2} \quad I_{s p h}=\frac{2}{5} m r^{2}
$$

$R=20 \mathrm{~cm}, \mathrm{~m}=50 \mathrm{~g}$,
$M_{\text {disk }}=200 \mathrm{~g}$.
Find $I_{\text {system }}$ relative to the center of the disc.

$$
\begin{gathered}
I_{c y l}=\frac{1}{2} m r^{2} \quad I_{\text {rod }}=\frac{1}{12} m L^{2} \\
I_{s y s}=I_{\text {ye }}+I_{\text {mass }}=\frac{1}{2} M \cdot r^{2}+m \cdot r^{2}=
\end{gathered}
$$

$$
=\frac{1}{2} \cdot 2 \cdot(.2)^{2}+.05 \cdot(2)^{2}=L^{0.006}
$$

## Webassign: L15 Q3

In order to increase the moment of inertia of the system we need to move the weights ... 1. Closer to the middle point of the rod
2. Farther away from the middle point of the rod

$$
\begin{array}{ll}
I=\sum m r^{2} & I_{\text {small mass }}=m r^{2} \quad I_{s p h}=\frac{2}{5} m r^{2} \\
I_{\text {ring }}=m r^{2} & I_{c y l}=\frac{1}{2} m r^{2} \quad I_{\text {rod }}=\frac{1}{12} m L^{2}
\end{array}
$$

In order to increase the moment of inertia of the system we need to move the weights ...

1. Closer to the middle point of the rod

Webassign: L15 Q3
2. Farther from the middle point of the rod

$$
\begin{aligned}
& I_{\text {small mass }}=m r^{2} \quad I_{r o d}=\frac{1}{12} m L^{2} \\
& I_{s y s}=\underline{\frac{1}{12} m \cdot L^{2}}+m, \Gamma_{1}^{2}+m_{2} \Gamma_{2}^{2} ; \Gamma_{1}, r_{1} \uparrow \Rightarrow I_{s y s} \uparrow
\end{aligned}
$$

For ANY system, in general $\quad I=\Sigma m r^{2}$
If we do not change its mass, but change its mass distribution, we change its moment of inertia: by moving mass away from the axis of rotation, we increase the moment of inertia relative to that axis.
E.G.: a solid cylinder vs. a hollow cylinder (or a ring)

$$
I_{c y l}=\frac{1}{2} m r^{2} \quad I_{\text {ring }}=m r^{2}
$$

A sphere and a disk (or a solid cylinder) have the same mass and the same size. You apply the same

$$
I_{c y l}=\frac{1}{2} m r^{2}
$$

$\frac{\text { net torque to both. }}{\text { Starting from rest, which }}$
$\frac{\text { net torque to both. }}{\text { Starting from rest, which }}$ spins faster 1 s later?

$$
I_{s p h}=\frac{2}{5} m r^{2}
$$

1. Sphere webassign: L15 Q4
2. Cylinder
3. Equally fast

$$
\vec{\tau}_{n e t}=I \vec{\alpha}
$$

A sphere and a disk (or a solid cylinder) have the same mass and the same size. You apply the same net torque to both. Starting from rest, which spins faster 1 s later?

1. Sphere
2. Cylinder
3. Equally fast

Webassign: L15 Q4

$$
\begin{aligned}
& \alpha J \\
& \sigma^{2}
\end{aligned}
$$



$$
\begin{aligned}
& \text { If } M=10 \mathbf{k g}, \mathbf{R}=\mathbf{2 5 \mathbf { c m } , \text { what force }} \\
& \text { should we apply to a string to } \\
& \text { provide for the disc the angular }
\end{aligned}
$$

## Two N2Ls!

Newton's $2^{\text {nd }}$ law for translational motion (CofM)
$\vec{F}_{n e t}=m \vec{a}$

Newton's $2^{\text {nd }}$ law for rotational motion (usually about CofM)

$$
\vec{\tau}_{N e t}=\vec{\tau}_{1}+\vec{\tau}_{2}+\vec{\tau}_{3}+\ldots
$$

$$
\vec{\tau}_{n e t}=I \vec{\alpha}
$$

I- moment of inertia
Depends on the shape (mass distribution)

The disk was released from rest.


If $M=10 \mathrm{~kg}, m=5 \mathrm{~kg}$, $R=25 \mathrm{~cm}$, assume friction provides a torque equal to 0.1 of the torque provided by the force of tension. Find the angular acceleration.
. $y_{k}^{\prime k}$ The disk was released from rest.
If $M=10 \mathrm{~kg}, \boldsymbol{m}=\mathbf{5} \mathrm{kg}, R=\mathbf{2 5} \mathrm{cm}$, assume friction provides a torque equal to 0.1 of the torque provided by the force of tension. Find the angular acceleration.

$$
\text { N2C: |) } F_{T}-n_{y}=\left.m \cdot(-\alpha)\right|_{2} N 22 R: r_{1_{F}}-r_{F_{T}}=I \cdot(-2)
$$

$$
\Delta \zeta=0 \xi_{L}
$$

$$
{ }_{3} \mid\left(\tau_{f_{r}} \mid=\cdot 1 \cdot \tau_{F_{T}}\right.
$$

$$
\geqslant
$$

$$
\text { 4) } C_{F_{T}}=F_{T} \cdot R
$$

$$
\text { 5) } \alpha=\frac{a_{r}}{R}=\frac{a}{R}
$$



$$
\begin{aligned}
& m g-T=m a \\
& \left.T \cdot r-0.1 * T \cdot r=\frac{1}{2} M r^{2} \cdot \frac{a}{r}\right) \\
& 0.9+T=\frac{1}{2} M \cdot a< \\
& m g=m a+\frac{1}{2} \frac{M a}{0.9}=\left(m+\frac{M}{1.8}\right) a \\
& a=\frac{m g}{m+\frac{M}{1.8}}=\frac{5 * 10}{5+\frac{10}{18}}=4.7 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& T=m(g-a)=5 \cdot(10-4.7)=26.5 \mathrm{~N}
\end{aligned}
$$

