Good morning!

$$
\text { Lab } 2 \text { is in SCI } 134
$$

Students who talked to me
yesterday about switching the lab section should see me after the lecture to sign add/drop form

Please, note, if yesterday you missed lab 1
because you had no access to webassign, you can make it up TODAY!

LectureMCQ L2 Q2

L1 answers

3

2

$$
2.60 \% \| 2
$$

- 3
2.60% | 2
- 4
22.1\% $\quad 17$

5
$6.49 \% \quad 5$

- 6
10.4\% 8
- 7
1.30% | 1
8
3.90% |
9 none of the above
49.4\%

38

4
17.9\% 15

5
8.33\% 7

6
4.76\% 4

7
1.19\% 1

8
3.57\% 3

9 none of the above
61.9\% 52

O I do not understand this question 1.19\% 1

LectureMCQ L2 Q2

yotta- (Y-)	10^{24}	1 septillion
zetta- (Z-)	10^{21}	1 sextillion
exa- (E-)	10^{18}	1 quintillion
peta- (P-)	10^{15}	1 quadrillion
tera- (T-)	10^{12}	1 trillion
giga- (G-)	10^{9}	1 billion
mega- (M-)	10^{6}	1 million
kilo- (k-)	10^{3}	1 thousand
hecto- (h-)	10^{2}	1 hundred
deka- (da-)**	10	1 ten

deci-(d-) $10^{-1} \quad 1$ tenth
centi- (c-) $\quad 10^{-2} \quad 1$ hundredth
milli- (m-) $\quad 10^{-3} \quad 1$ thousandth
micro- $\left(\mu_{-}\right) \quad 10^{-6} \quad 1$ millionth
nano- ($\mathrm{n}-$) $\quad 10^{-9} \quad 1$ billionth
pico- (p-) $\quad 10^{-12} \quad 1$ trillionth
femto- (f-) $\quad 10^{-15} \quad 1$ quadrillionth
atto- (a-) $\quad 10^{-18} \quad 1$ quintillionth
zepto- (z-) $10^{-21} \quad 1$ sextillionth
yocto- $(y-) \quad 10^{-24} \quad 1$ septillionth

1 km =

yotta- (Y-)	10^{24}	1 septillion
zetta- (Z-)	10^{21}	1 sextillion
exa- (E-)	10^{18}	1 quintillion
peta- (P-)	10^{15}	1 quadrillion
tera- (T-)	10^{12}	1 trillion
giga- (G-)	10^{9}	1 billion
mega- (M-)	10^{6}	1 million
kilo- (k-)	10^{3}	1 thousand
hecto- (h-)	10^{2}	1 hundred
deka- $(\mathrm{da-}) * *$	10	1 ten

deci-(d-) $10^{-1} \quad 1$ tenth
centi- (c-) $\quad 10^{-2} \quad 1$ hundredth
milli- (m-) $\quad 10^{-3} \quad 1$ thousandth
micro- $\left(\mu_{-}\right) \quad 10^{-6} \quad 1$ millionth
nano- ($\mathrm{n}-$) $\quad 10^{-9} \quad 1$ billionth
pico- (p-) $\quad 10^{-12} \quad 1$ trillionth
femto- (f-) $\quad 10^{-15} \quad 1$ quadrillionth
atto- (a-) $\quad 10^{-18} \quad 1$ quintillionth
zepto- ($\mathrm{z}-$) $\quad 10^{-21} \quad 1$ sextillionth
yocto- $(y-) \quad 10^{-24} \quad 1$ septillionth
$1 \mathrm{~km}=1000 \mathrm{~m}$

Motion

What are some words and/or concepts we use when describing motion?

Was the object moved? What is motion?
What is a motion diagram? What is a trajectory?
What is the difference between a path and the shortest path?

What is the difference between distance traveled and displacement?

Was the yellow
puck been moving?

Motion is relative !
Always keep in mind - relative to WHAT is it happening?
P.S. in 96.4 \% problems

It is meant (assumed) "relative to the ground"

(unless the opposite is clearly said!).

A visualization of motion

00:05

00:10

00:15

\square

00:20

00:25

00:30

Motion Diagram

$00: 00$	$00: 10$	$00: 20$		$00: 30$
\square	\square	\square	\square	\square
$00: 05$	$00: 15$		\square	\square

Motion Diagram

Motion Diagram

00:00

00:10

00:20

00:30

"The line
00:25 of motion"

A trajectory is a line visualizing the path; a line connecting all positions.

1-D motion

2-D motion

A trajectory is
A trajectory is a line a straight line. surface) but not straight.

3-D motion = not 1 and not 2 D

1-D motion

2-D motion

A trajectory is
A trajectory is a line a straight line. in a plane (a flat surface) but not straight.

3-D motion = not 1 and not 2 D

ANY motion (1-D, 2-D, etc.) Distance traveled =: the length of the trajectory

ANY motion (1-D, 2-D, etc.)

 Distance traveled =: the length of the trajectory

Displacement = (a) action; (b) distance from S and F

Displacement = (a) action; (b) distance from S and F

Displacement =: (c) an "arrow" pointing from S to F

Displacement $=:(\mathbf{c})$ an "arrow" pointing from S to F

Example Problem You walk 4 m West, make a 90° turn and walk 3 m South. What is your total distance

Let's use this simple problem as an illustration of the general problem-solving

 strategy.Some helpful questions for solving physics problems 1. What objects are involved? What processes are happening to them? (use your imagination - make a picture showing the objects and the processes they are involved into)
2. What properties of the objects and the processes might be important?
3. What physical quantities should be used for describing those properties, what connections might be important? 5. What laws or definitions should be used to describe important connections mathematically?

Some helpful questions for solving physics problem

Example Problem
You walk 4 m West, make a 90° turn and walk 3 m South. What is your total distance

Let's use this simple problem as an illustration of the general problem-solving strategy.

Some helpful questions for solving physics problems 1. What objects are involved? What processes are happening to them? (use your imagination - make a picture showing the objects and the processes they are involved into) 2. What properties of the objects and the processes might be important?
3. What physical quantities should be used for describing those properties, what connections might be important? 5. What laws or definitions should be used to describe important connections mathematically?
traveled?

$$
L=4+3=7 \mathrm{~m}
$$

You walk 4 m West, make a 90° turn and walk 3 m South. What is your total distance Let's use this simple problem as an

 traveled?

 traveled?} illustration of the general problem-solving strategy.

Some helpful questions for solving physics problems 1. What objects are involved? What processes are happening to them? (use your imagination - make a picture showing the objects and the processes they are involved into)
2. What properties of the objects and the processes might be important?
3. What physical quantities should be used for describing those properties, what connections might be important? 5. What laws or definitions should be used to describe important connections mathematically?

Example Problem

You walk 4 m West, make a 90^{0} turn and walk 3 m South.

What is the magnitude of your displacement?
2. 2 m
3.3 m

Etc.

Enter your answer:
LectureMCQ L2 Q3
 90° turn and walk 3 m South.
(a) What is your total distance traveled?
(b) What is your total displacement?

$$
\binom{a}{b} \longleftrightarrow ?
$$

$$
\begin{aligned}
& a^{2}+b^{2}=3^{2} \\
& 3^{2}+4^{2}=s^{2} \\
& 25=\zeta^{2} \rightarrow \zeta \\
& \sqrt{2} 5=\sqrt{3^{2}} \\
& \pm 5=3 \Rightarrow 5=5
\end{aligned}
$$

Right-angled triangle

What do we know about a "right triangle"?

Right-angled triangle

We know everything!

Useful relationships SOHCAHTOA:

$$
\sin \theta=\frac{a}{c}=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\cos \theta=\frac{b}{c}=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{a}{b}=\frac{\text { opposite }}{\text { adjacent }}
$$

Pythagorean theorem: $\quad c^{2}=a^{2}+b^{2}$

Angle ($\boldsymbol{\theta})$	$\boldsymbol{\operatorname { s i n } (\boldsymbol { \theta })}$	$\boldsymbol{\operatorname { c o s } (\boldsymbol { \theta })}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

Example Problem

You walk 4 m West, make a 90° turn and walk 3 m South. What is your total distance Let's use this simple problem as an

 illustration of the general problem-solving strategy.Some helpful questions for solving physics problems 1. What objects are involved? What processes are happening to them? (use your imagination - make a picture showing the objects and the processes they are involved into)
2. What properties of the objects and the processes might be important?
3. What physical quantities should be used for describing those properties, what connections might be important? 5. What laws or definitions should be used to describe important connections mathematically?

$$
S^{2}=4^{2}+3^{2}=25=>S=5 \mathrm{~m}
$$

Right-angled triangles

Useful relationships SOHCAHTOA:

$$
\sin \theta=\frac{a}{c}=\frac{\text { opposite }}{\text { hypotenuse }}
$$

LectureMCQ L2 Q4

"The 3-4-5 triangle is also a 30-60-90 triangle"

$$
\cos \theta=\frac{b}{c}=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{a}{b}=\frac{\text { opposite }}{\text { adjacent }}
$$

Pythagorean theorem: $\quad c^{2}=a^{2}+b^{2}$

Angle ($\theta)$	$\sin (\theta)$	$\cos (\boldsymbol{\theta})$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

The statement above is ... 1. Correct. 2. Wrong. 3. Depends on the triangle 4. Confusing 5. Reassuring

Right-angled triangles
If sides are 3 and 4 , the angle θ is ...

Right-angled triangles

Useful relationships SOHCAHTOA:

$$
\sin \theta=\frac{a}{c}=\frac{\text { opposite }}{\text { hypotenuse }}
$$

LectureMCQ L2 Q4

"The 3-4-5 triangle is also a 30-60-90 triangle"

$$
\cos \theta=\frac{b}{c}=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{a}{b}=\frac{\text { opposite }}{\text { adjacent }}
$$

Pythagorean theorem: $\quad c^{2}=a^{2}+b^{2}$

Angle ($\theta)$	$\sin (\theta)$	$\cos (\boldsymbol{\theta})$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

The statement above is ... 1. Correct. 2. Wrong. 3. Depends on the triangle 4. Confusing 5. Reassuring

Thinking

Physical terms/parameters/quantities used to describe motion: position, trajectory/path, displacement, magnitude of the displacement, distance traveled, time of motion/elapsed time (origin, reference frame, coordinate, position vector, radius-vector,).
=> need to know each definition literally!
Motion = Change in the position.

$$
\ldots=>\text { HOW FAST ?? }
$$

A displacement is a vector

 representing the change in the position vector.
The distance traveled is the length of the trajectory

Start

How fast does the object move (i.e. changes its location)?
"How fast" => "the rate of change of" => "change per unit time"
average velocity $=\frac{\text { net displacement }}{\widehat{\imath} \text { total time }}$, or, $\vec{v}=\frac{\Delta \vec{r}}{\Delta t}$
Names! Definitions!
Equations!
average speed $=\frac{\sqrt{n}}{\text { total distance }}$, or $\stackrel{\sqrt{v}}{v}=\frac{L}{\Delta t}$ total time

Speed is a scalar representing how fast an object is traveling.
"soon"

Velocity is a vector combining the speed with the direction of motion. We can also define velocity as the rate of change of position.

LectureMCQ L2 Q56

 For 6 seconds a fly flies 4 m West, makes a 90° turn and for 4 more seconds flies 3 m South. Calculate is the magnitude of its average velocity.1. $0.1 \mathrm{~m} / \mathrm{s}$
2. $0.2 \mathrm{~m} / \mathrm{s}$
3. $0.3 \mathrm{~m} / \mathrm{s}$
average velocity $=\frac{\text { net displacement }}{}$ Names! Definitions! total time 4. ...
total distance average speed $=\frac{\text { total time }}{\text { tolancer }}$

For 6 seconds a fly flies 4 west, makes a 90° turn and for 4 more seconds flies 3 m South. Calculate is the magnitude of its average velocity.

$$
\frac{V_{A}=\frac{3}{t}}{\left|\vec{V}_{A}\right|=\frac{|\xi|}{t}}=\frac{5}{6+4}=\frac{5}{10}=-5 \frac{m}{3}
$$

$$
V_{s_{r}}=\frac{L}{t}=\frac{4+3}{6+4}=0.7 \mathrm{~m} / \mathrm{s}
$$

1-D motion

2-D motion

A trajectory is
A trajectory is a line a straight line. surface) but not straight.

3-D motion = not 1 and not 2 D

2 - D motion

The basics of the $1-\mathrm{D}$ motion

Math description of 1-D Motion

A table

00:00 00:10 00:30

X - axis
The origin X - coordinates

\mathbf{t}	\mathbf{x}
0	1
5	61
10	221
15	481
20	841
25	1301
30	1861

Where was the object at $t=1$? How much time was it moving? What is the motion equation?

Where was the object at $t=1$? How much time was it moving? What is the motion equation?

Where was the object at $t=1$?
How much time was it moving?
What is the motion equation?

1 D-motion

$x_{f_{i}}=x_{i}+\Delta x$

coordinates

$$
\Delta x=x_{f}-x_{i}
$$

The pősition of álady relative to Earth is given by x. The +2.0 m displacement of the lady is represented by an arrow pointing to the right.

To know her position at any instant we use motion equation $x(t)$ (which depends on the type motion)

To describe the position of an object at any instant we use motion equation $\quad \underline{x=x}(t)$

Average velocity
 $v_{x}=\frac{\Delta x}{\Delta t}$

Average speed

$$
v=\frac{L}{\Delta t} \longleftarrow \text { distance }
$$

$$
x_{f}=x_{i}+\Delta x \quad \Delta x=x_{f}-x_{i}
$$

To describe the position of an object at any instant we use motion equation $\quad x=x(t)$

$$
\begin{array}{cc}
\text { Average velocity } & \text { Average speed } \\
v_{x}=\frac{\Delta x}{\Delta t} & v=\frac{L}{\Delta t} \longleftarrow \text { distance }
\end{array}
$$

For 6 seconds a fly flies 4 m West, makes a U-turn and for 4 more seconds flies 3 m East. What is the magnitude of its average velocity?

For 6 seconds a fly flies 4 m West, makes a U-turn and for 4 more seconds flies 3 m East. What is the magnitude of its average velocity?

$$
x_{f}=x_{i}+\Delta x
$$

$$
\Delta x=x_{f}-x_{i}
$$

To describe the position of an object at any instant we use motion equation $\underline{x=x}(t)$

Average velocity
$v_{x}=\frac{\Delta x}{\Delta t}$

Average speed
$v=\frac{L}{\Delta t} \longleftarrow$ distance

