Good morning!

Lab 9 is in B9

If you are here, please pick up YOUR exam!!
 L to prove your presence'

Please, login into webassing, locate LectureMCQ_L23 (PY105)
and answer question 1 (but ONLY Q1!).

Temperature, temperature scales, thermal contact, thermal conduction, thermal equilibrium, measuring temperature, heat, internal energy, meaning of temperature, meaning of heat, thermal expansion, coefficient of thermal expansion (CTE), linear, areal, and volumetric CTE, heat capacity, specific heat (capacity), thermally insulated system, heat balance equation (an equation for thermal equilibrium), phase transition, critical temperature, latent heat (capacity), method for solving thermal equilibrium problems, convection, thermal radiation, thermal conduction, thermal conductivity, the ideal gas, absolute temperature, a mole, the Avogadro's number, the universal gas constant, RMS values, the ideal gas law, iso - laws, graphs for gas processes (PV, VT, PT diagrams), the Boltzmann's constant, the meaning of the absolute temperature, the meaning of the pressure, degree of freedom, the equipartition theorem, monatomic, diatomic, polyatomic gas, calculating internal energy, the first law of thermodynamics, work done by gas, calculating specific heat (Cv, Cp), isothermal process, adiabatic process, thermodynamic cycle, work done over a cycle, heat engine, entropy, second law of thermodynamics, heat engine efficiency, the Carnot cycle, maximum (ideal) heat engine efficiency, a heat pump and a refrigerator(the last topic of test 3)
$c_{\mathrm{w}}=4000 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) ; c_{\mathrm{ice}}=2000 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) ;$

$$
L_{f}=3 \times 10^{5} \mathrm{~J} / \mathrm{kg} \quad Q=c m\left(T_{f}-T_{i}\right)
$$

You need to make 20 ice cubes (5 g each) at $-5^{\circ} \mathrm{C}$. You pour $25^{\circ} \mathrm{C}$ water into an ice tray and place it in a freezer. How much heat should water?

Webassign: L23 Q2

1. Absorb 2. Release

$$
c_{\mathrm{w}}=4000 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) ; c_{\text {ice }}=2000 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right) ; L_{f}=3 \times 10^{5} \mathrm{~J} / \mathrm{kg}
$$

You need to make 20 ice cubes (5 g each) at $-5^{\circ} \mathrm{C}$. You pour $25^{\circ} \mathrm{C}$ water into an ice tray and place it in a freezer. How much heat should water ...?
Webassian: 23 1. 02 Absorb
2. Release

1. Objech
2. procesan \leftrightarrows or
3. $Q=\ldots$.

$$
\begin{aligned}
& Q_{1}=C_{m} \cdot m \cdot(0-25)=-4000 \cdot 20.0 .005 \cdot 25 \mathrm{~J} \\
& Q_{2}=-L_{1} \cdot m=-300000 \cdot 20.0005 \mathrm{~J} \\
& Q_{3}=C_{1} \cdot m(-5-0)=-2000 \cdot 20 \cdot 0.005 \cdot 5 \mathrm{~J} \\
& Q=Q_{1}+Q_{2}+Q_{3}
\end{aligned}
$$

$$
\begin{aligned}
Q= & \underline{4000} \cdot 20 \cdot \underline{0.005} \cdot 25-3.00 \underline{000 \cdot 20.0 .005-} \\
& -200 \cdot 20 \cdot 0.005 \cdot 5=-4.205 \cdot 25-300 \cdot 20.5- \\
- & 2 \cdot 2 \cdot 5.5=-100 \cdot 100-300 \cdot 100-4.25= \\
= & -10000-30000-100=-40100 \mathrm{~J}
\end{aligned}
$$

A solid object is placed into a liquid (poured into a container). The liquid has its initial temperature of $500^{\circ} \mathrm{C}$; the solid is initially twice warmer. The solid has the mass of a third of the mass of the liquid, but its specific heat is twice of the specific heat of the liquid. The container has the mass of the quarter of the solid and its specific heat is equal to one half of the liquid's. Find the final temperature of the system.

A solid object is placed into a liquid (poured into a container). The liquid has its initial temperature of $500^{\circ} \mathrm{C}$; the solid is initially twice warmer. The solid has the mass of a third of the mass of the liquid, but its specific heat is twice of the specific heat of the liquid. The container has the mass of the quarter of the solid and its specific heat is equal to one half of the liquid's. Find the final temperature of the system.

$$
\begin{gathered}
Q_{S}+Q_{l}+Q_{B}=0 \\
C_{3} m_{3} \circ t_{3}+C_{i} m_{i} \Delta t_{l}+C_{B} m_{\Delta \Delta} t_{\Delta}=0 \\
\phi= \\
D \cdot C_{Q} \cdot \frac{1}{3} \cdot m_{l} \cdot\left(f_{f}-1000\right)+C_{l} \cdot m_{l} \cdot\left(t_{f}-500\right)+\frac{1}{2} c_{e} \cdot \frac{1}{4} \frac{1}{3} \cdot m_{k} \cdot\left(t_{f}-500\right) \\
D= \\
\frac{2}{3} \cdot\left|t_{f}-1000\right|+t_{4}-500+\frac{1}{24} \cdot\left(t_{f}-500\right)
\end{gathered}
$$

\rightarrow solve hor $t f$

$$
\begin{aligned}
& \left.\theta=\frac{2}{3} t_{f}-\frac{2}{3} \cdot 1000+t_{f}-500+\frac{1}{24} \cdot t_{f}-\frac{1}{24} \cdot 500 \quad \right\rvert\, \times 24 \\
& 0=2 \cdot 8 \cdot t_{f}-2 \cdot 8 \cdot 1000+24 \cdot t_{f}-24 \cdot 500+t_{f}-500 \\
& 16000+12000+500=(16+24+1) t_{f} \\
& 28500=41 \cdot t_{f} \\
& t_{f}=\frac{28500}{41}=695^{\circ} \mathrm{C}
\end{aligned}
$$

Last topics (do not read this slide)

The ideal gas, absolute temperature, a mole, the Avogadro's number, the universal gas constant, RMS values, the ideal gas law, iso - laws, graphs for gas processes (PV, VT, PT diagrams), the Boltzmann's constant, the meaning of the absolute temperature, the meaning of the pressure, degree of freedom, the equipartition theorem, monatomic, diatomic, polyatomic gas, calculating internal energy, the first law of thermodynamics, work done by gas, calculating specific heat (Cv, Cp), isothermal process, adiabatic process, thermodynamic cycle, work done over a cycle, heat engine, entropy, second law of thermodynamics, heat engine efficiency, the Carnot cycle, maximum (ideal) heat engine efficiency, a heat pump and a refrigerator(the last topic of test 3)

Structure of Matter

As we know now, all objects around us (solid or fluid) are made of a huge amount of tiny and very light particles (atoms and molecules).

For example, an oxygen atom has the weight of

$$
\mathrm{m}_{0}=2.66 * 10^{-26} \mathrm{~kg}
$$

The mass of an atom or a molecule
If we take $\mathrm{m}=1$ gram of oxygen, the total number N of atoms in it is

$$
\mathrm{N}=\mathrm{m} / \mathrm{m}_{0}=3.76 * 10^{22}
$$

Avogadro's Number

An amount of a matter having $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ particles is named a MOLE
A mole is very similar to a dozen, in the sense that it stands for a certain number of things.
A dozen means 12 , while a mole means 6.02×10^{23}.
This number is also known as Avogadro's number, N_{A}.

$$
\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}
$$

1 mole $=\mathbf{N}_{\mathrm{A}}$ particles

Every material has the same number of particles in 1 mole, but the mass of 1 mole is different to different materials.
 A molar mass $\mu=\mathbf{m}_{0} \mathbf{N}_{A}$ is the mass of 1 mole of the substance. \quad (note: Use μ or M)

Avogadro's Number
An amount of a matter having 6.02×10^{23} particles is named a MOLE
A mole is very similar to a dozen, in the sense that it stands
for a certain number of things.
A dozen means 12 , while a mole means 6.02×10^{23}.
This number is also known as Avogadro's number, N_{A}.

$$
\begin{gathered}
\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \\
1 \text { mole }=\mathrm{N}_{\mathrm{A}} \text { particles }
\end{gathered}
$$

Every material has the same number of particles in 1 mole, but the mass of 1 mole is different to different materials.
A molar mass $\mu=\mathrm{m}_{0} \mathrm{~N}_{\mathrm{A}}$ is the mass of 1 mole of the substance.

$$
M=\mu=m_{0} N_{\mathrm{A}}
$$

$m_{0}=$ the mass of an atom or a molecule

Avogadro's Number

An amount of a matter having 6.02×10^{23} particles is named a MOLE
A mole is very similar to a dozen, in the sense that it stands for a certain number of things.
A dozen means 12 , while a mole means 6.02×10^{23}.
This number is also known as Avogadro's number, N_{A}.

$$
\begin{gathered}
N_{A}=6.02 \times 10^{23} \\
1 \text { mole }=N_{A} \text { particles }
\end{gathered}
$$

\# of moles

Molar mass
(note: Use μ or M)
Every material has the same number of particles in 1 mole , but the mass of 1 mole is different to different materials. A molar mass $\mu=\mathrm{m}_{0} \mathrm{~N}_{\mathrm{A}}$ is the mass of 1 mole of the substance.

Webassign: L23 Q3

Molar mass of $\mathrm{H}_{2}=$
$1.1 \mathrm{~kg} / \mathrm{mol}$
2. $2 \mathrm{~kg} / \mathrm{mol}$
3. $3 \mathrm{~kg} / \mathrm{mol}$
9. None of the above

Avogadro's Number
An amount of a matter having 6.02×10^{23} particles is named a MOLE

A mole is very similar to a dozen, in the sense that it stands for a certain number of things.
A dozen means 12 , while a mole means 6.02×10^{23}.
This number is also known as Avogadro's number, N_{A}.

$$
N_{A}=6.02 \times 10^{23}
$$

1 mole $=\mathrm{N}_{\mathrm{A}}$ particles
Every material has the same number of particles in 1 mole , but the mass of 1 mole is different to different materials. A molar mass $\mu=\mathrm{m}_{0} \mathrm{~N}_{\mathrm{A}}$ is the mass of 1 mole of thy substance.

\# of moles
Mass of the gas

$$
n=\frac{N}{N_{A}}=\frac{m_{0} N}{m_{0} N_{A}}=\frac{m}{M}=\frac{m}{\mu}
$$

Molar mass
(note: Use μ or M)

The Ideal Gas Law

An ideal gas satisfies these conditions:

1. It consists of a large number of identical particles (atoms, molecules).
2. The volume occupied by the particles themselves is negligible compared to the volume of the container they're in (particles are dots or made of dots).
3. The particles move in random motion.
4. The particles obey Newton's laws of motion; they experience forces only during collisions; any collisions are completely elastic, and instantaneous (take a negligible amount of time).

$T>0$

What is the average velocity of the ideal gas particles (for $T>0$)? $\quad \frac{1}{N} \sum \vec{v}=$?

Webassign: L23 Q4

1) It depends on the temperature of the gas.
2) Zero.
3) It points to the right. 4) It is immeasurable.

What is the average velocity of the ideal gas particles
(for $T>0$)? $\frac{1}{N} \sum \vec{v}=$?

Webassian: L23 Q4

1) It depends on the temperature of the gas.
2) Zero.
3) It points to the right.
4) It is immeasurable.

The nature of pressure.

To describe the force acting from the fluid on the object the physical quantity PRESSURE is used.

$\vec{F} \Delta t=m \overrightarrow{v_{2}}-m \vec{v}_{1}$

Webassian: L23 Q4
What is the average velocity of the ideal gas particles
(for $\underline{T>0}$)?

1) It depends on the temperature of the gas. 2) Zero.
2) It points to the right. 4) It is immeasurable.

$$
\frac{1}{N} \sum \vec{v}=?
$$

The average translational Kinetic Energy ($T>0$)

$$
K E_{t r_{-} \text {ave }}=\frac{\frac{m v_{1}^{2}}{2}+\frac{m v_{2}^{2}}{2}+\frac{m v_{3}^{2}}{2}+\ldots \frac{m v_{N}^{2}}{2}}{N}>0
$$

Always positive!

What is the average velocity of the ideal gas particles?

$T>0$

2) Zero.

For the huge number of particles $\frac{1}{N} \sum \vec{v}=0$
The average velocity is zero, because, on average, the velocity of particles going in one direction is cancelled by the velocity of particles going in the opposite direction.

Vector addition - when all vectors point in all possible directions!

Ideal Gas Equations

The definition of absolute Temperature
Kinetic Theory of Ideal Gas
$E_{\text {tr } K \text {-AvE }}$ is $\mathrm{Av} \operatorname{Tr}$ KE of N particles
$\overrightarrow{F \Delta} t=m \overrightarrow{v_{2}}-m \overrightarrow{v_{1}}$
$T=t+273.15$

$\mathrm{PV}=\frac{2 \mathrm{~N}^{2}}{} \mathrm{E}_{\mathrm{K}-\mathrm{AVE}}$

The Ideal Gas Law
the ideal gas law $\mathrm{PV}=\mathrm{NkT}$
$\mathrm{PV}=\mathbf{n R T}$
$\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

For curios people

PV = NkT

It is convenient to rewrite the law: $\quad n=\frac{N}{N_{A}}$
$\mathrm{N}=\mathrm{n} * \mathrm{~N}_{\mathrm{A}}, \mathrm{n}$ is the number of moles: $\quad \mathrm{PV}=\mathrm{nN}_{\mathrm{A}} \mathrm{kT}$
Let's define $\quad \mathrm{N}_{\mathrm{A}} \mathrm{k}=\mathrm{R}$, the universal gas constant:
$\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

The_Ideal_Gas_Law

$$
\mathrm{PV}=\mathrm{nRT}
$$

The_Ideal Gas_aw
 $\frac{P V}{R T}=\frac{n R T}{K T}$

$$
\frac{P V}{n T}=? ? ?
$$

$$
\frac{P V}{R T}=n ; \frac{P V}{n T}=R=\text { cons }
$$

Webassian:L23 Q5

T

1. Always constant
2. Sometimes constant
3. Always change
4. None of the above

The_Ideal Gas_ aw

$P V=n R T \quad \Rightarrow P V$
 $\overline{n T}=R=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

$$
n=v=\frac{N}{N_{A}}=\frac{m}{M}
$$

Webassian: L23 Q5

1. Always constant
2. Sometimes constant
3. Always change
4. None of the above
$\mathrm{R}=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$

$P V=n R T$

PV

$\underline{T}=n R \quad$ 2. Sometimes constant

When the amount of gas does NOT
change => $n=$ const $=>~ P V / T=$ const

An ideal gas is in a container at the temperature of $127^{\circ} \mathrm{C}$. Find the new temperature if the volume of the container was tripled, the pressure was
decreased to the half of the initial, and a quarter of the gas was lost to the environment.

An ideal gas is in a container at the temperature of $127^{\circ} \mathrm{C}$. Find the new temperature if the volume of the container was tripled, the pressure was decreased to the half of the initial, and a quarter of the gas was lost to the environment.

$$
\begin{aligned}
& t_{i}=127^{\circ} \mathrm{C} \\
& f_{f}=\text { ? } \\
& \frac{P_{i} V_{i}}{P_{1} V_{f}}=\frac{n_{i} R T_{i}}{n_{4} R T_{1}} \Rightarrow \begin{array}{l}
P_{f^{\prime}}=\frac{1}{2} P_{i} \\
\frac{R v_{i}}{\frac{1}{2} A \cdot W_{i}}=\frac{n_{i} R \cdot T_{i}}{\frac{3}{4} n_{0} \cdot R \cdot T_{4}} ; \quad \frac{n_{q}}{}=\frac{2}{3}=\frac{n_{i}}{3} \cdot \frac{1}{4} \frac{T_{i}}{T_{7}}=\frac{3}{4} n_{i} \\
T_{7}=2 \cdot T_{i}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
T_{f}=2 \cdot T_{1}=\text { wikomy } \mid 257 \\
\downarrow \\
k \quad T_{i}=127+273= \\
k i \quad=400 \mathrm{k} \\
T_{f}=2 \cdot 400=800 \mathrm{k} \\
t_{7}=800-273=527^{\circ} \mathrm{C}
\end{gathered}
$$

Three standard processes $(\mathrm{n}=$ const $)$:

Each particle is a dot.
the internal energy is equal to just total average kinetic energy of all the particles, therefore:

$$
\begin{aligned}
& K E_{t r_{-} \text {ave }}=\frac{3}{2} \mathrm{kT} \\
& \mathrm{VkT}=3 * \frac{1}{2} \mathrm{NkT}
\end{aligned}
$$

An internal energy of the gas: $\mathbf{U}=\mathrm{E}_{\mathrm{int}}=\mathrm{E}_{\mathrm{KE} _a v e}{ }^{*} \boldsymbol{N}$
Each direction (x, y, and $\mathrm{z}-3$ directions!) contributes $1 / 2 \mathrm{NkT}$ to the energy.

For an atom: $\mathrm{KE}=\mathrm{Tr} _$KB
Each particle is a dot.
Only translational kinetic energy does exist, hence the internal energy is equal to just total average kinetic energy of all the particles, therefore:

$$
K E_{r_{-} \ldots v}=\frac{3}{2} k T
$$

$$
V=N / \cdot E_{T \Gamma K E}=N \cdot \frac{3}{2} k T=
$$

Monatomic ideal gas: $\mathrm{E}_{\text {int }}=\mathrm{E}_{\mathrm{K}-\mathrm{AVE}} \mathrm{N}=\frac{3}{2} \mathrm{NkT}=3^{*} \frac{1}{2} \mathrm{NkT}$
An internal energy of the gas: $\mathbf{U}=\mathrm{E}_{\text {int }}=\mathrm{E}_{\text {KE_ave }}{ }^{*} \mathbf{N}$

$$
=\frac{3}{2} k N T=\frac{3}{2} h R \cdot T
$$

Each direction (x,y, and $\mathrm{z}-3$ directions!) contributes $1 / 2 \mathrm{NkT}$ to the energy.

$$
U=\frac{3}{2} n R T=\frac{3}{2} P V
$$

$\mathrm{E}_{\text {tr K-AVE }}$ is $\mathrm{Av} \operatorname{Tr} \mathrm{KE}$ of CofM of gas particles.

$$
\mathrm{E}_{\mathrm{tr}-\mathrm{AVE}}=\frac{3}{2} \mathrm{kT}
$$

This is a definition of the absolute temperature
k - Boltzmann constant;

$$
k=1.38 * 10^{-23} \mathrm{~J} / \mathrm{K}
$$

For an atom: KE = Tr_KE
Energy of a GAS made of \boldsymbol{N} atoms.

$$
\begin{gathered}
U=N \cdot E_{K-A V E}=N \frac{3}{2} k T=n N_{A} \frac{3}{2} k T=\frac{3}{2} n N_{A} k T=\frac{3}{2} n R T \\
U=\frac{3}{2} n R T \quad \frac{\text { Internal energy }}{\text { for a monatomic gas }}
\end{gathered}
$$

For a molecule: KE = Tr_KE + Rot_KE
For a diatomic (two atoms make one molecule) molecule there are three translation directions, and rotational kinetic energy also contributes, but only for rotations about two of the three perpendicular axes. The five contributions to the energy (five degrees of freedom) give:
(we ignore possible oscillations)

$$
\text { Diatomic ideal gas: } \mathrm{E}_{\mathrm{int}}=\frac{5}{2} \mathrm{NkT}=U=\frac{5}{2} n R T
$$

Polyatomic gas:

$$
\longleftarrow U=\mathrm{E}_{\mathrm{int}}=\frac{6}{2} \mathrm{NkT}=\frac{6}{2} n R T
$$

i (the number of degrees of freedom) depends on the type of the particles:
$i=3$ - for point-like particles
$i=5 \quad$ • for dumbbell-like particles (no oscillations)
$i=6 \quad$ for big particles made of 3 or more atoms (no oscillations)

Ideal gas: $\quad \mathrm{U}=\mathrm{E}_{\text {int }}=\frac{i}{2} \frac{\mathrm{~N}}{\mathrm{~N}_{\mathrm{A}}} \mathrm{N}_{\mathrm{A}} \mathrm{kT}=\frac{i}{2}{ }^{n \mathrm{RT}}=\frac{i}{2} \frac{\mathrm{PV}}{}$
In General: \Rightarrow Ideal gas: $\mathrm{U}=\frac{i}{2} n \mathrm{RT}$

Convenient connections

Convenient connections

$\Delta \boldsymbol{U}=\frac{i}{2} \Delta(\boldsymbol{V} \boldsymbol{P})$
Three standard processes $(n=$ const $):$

$\frac{P V}{T n}=R=8.31 \mathrm{~J} /($ Kmole $)$
(Try to plot graphs for the same processes using PT and VT axes)

PY105 HW3 P4 (9141550)

| Current Score: | $0 / 9$ | Due: | Thu Jun 30 | 2016 | $11: 00$ | PM EDT | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| Points | $0 / 2$ | $0 / 1$ | $0 / 1$ | $0 / 2$ | $0 / 1$ | $0 / 1$ | $0 / 1$ | $0 / 9$ |

Description

Gases, work and energy, 1LT, 2LT, engines

1. $\leftarrow 0 / 2$ points

OSColPhys1 13.P.036.WA. [26
Two insulated cylinders A and B with volumes $V_{A}=1.4 \mathrm{~m}^{3}$ and $V_{B}=5.2 \mathrm{~m}^{3}$ contain chlorine gas at different pressur temperatures. The cylinders are insulated (no heat is lost to or gained from the outside) and connected by a valve. Init the valve is closed and the gas in the two cylinders has the following values:

$$
P_{A}=4.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, T_{A}=190 \mathrm{~K}, P_{B}=2.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, \quad T_{B}=500 \mathrm{~K} .
$$

6. $+0 / 1$ points

OSColPhys1 15.P.019.WA. [26117:
Calculate the net work output of a heat engine following path ABCDA in the figure below, where $V_{1}=6.6 \times 10^{-3} \mathrm{~m}^{3}$ and $v_{2}=26.4 \times 10^{-3} \mathrm{~m}^{3}$.

Calculate the internal energy and the pressure of 1 kg of a Hydrogen gas at the room temperature held in a 1 L jar.

$$
f \sim 20^{\circ} \mathrm{C} \Rightarrow T=273+20=293 \mathrm{~K}
$$

$$
\begin{array}{lcc}
\mathrm{PV}=\mathrm{nRT} & n=\frac{m}{M}=\frac{1 m}{2 \cdot \frac{f}{m}}= & V=1 L=10^{-3} \mathrm{~m}^{3} \\
U=\frac{i}{2} n R T & P V=n R \mathrm{~T} \\
U=\frac{i}{2} P V & =\frac{1000 \mathrm{~g}}{2 \mathrm{~g}} \mathrm{~m} \alpha=500 \mathrm{md} & P=\frac{500 \cdot 8 \cdot 293}{10^{-3}}=1.17 \cdot 109 P_{A} \\
n=\frac{m}{M} & V=\frac{5}{2} \cdot n R T=\frac{5}{2} \cdot 500 \cdot 8 \cdot 293=2.9 \cdot 106 \mathrm{~J}
\end{array}
$$

Calculate the change in the internal energy of a Hydrogen gas that expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant temperature.
Webassian:L23 06
$U=\frac{i}{2} n R T \quad \mathrm{PV}=\mathrm{nRT}$
$U=\frac{i}{2} P V$
$n=\frac{m}{M}$

Calculate the change in the internal energy of a Hydrogen gas that expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant temperature.
$\begin{array}{lll}\text { Webassian:L23 } 66 & 1 . \Delta U>0 \quad \underline{2 . \Delta U=0} & 3 . \Delta U<0\end{array}$
$U=\frac{i}{2} n R T \quad \mathrm{PV}=\mathrm{nRT}$

$$
n=\frac{m}{M}
$$

$$
\begin{aligned}
& T=\text { cons }
\end{aligned}
$$

$U=\frac{i}{n} n T \quad$ Two ways to change U
 $$
U=\frac{i}{2} P V
$$

Thermal contact
Do work

$$
\begin{gathered}
\Delta U=Q+W_{\text {on system }} \\
\because \vdots
\end{gathered}
$$

$$
\begin{gathered}
\Delta U=Q+W_{\text {on system }} \\
W_{\text {on system }}=-W_{\text {by system }}
\end{gathered} \quad \because: \quad U=\frac{i}{2} n R T
$$

$$
\Delta U=Q-W_{\text {by system }}
$$

The First Law of Thermodynamics

$$
Q=\Delta U+W_{\text {by } \text { system }}
$$

For example: The heat absorbed by the system can be spent $=>\Delta U$ or $W_{\text {by system }}$.

WORK done

by a gas.

WORK done

 by a gas.
Isobaric

$\Delta V>0=>W>0$

$$
\Delta \mathrm{V}<0 \Rightarrow \mathrm{~W}<0
$$

$$
F=\text { cons } \quad<=\mathrm{P}=\mathrm{const}
$$

$\downarrow \mathrm{F}_{\mathrm{mg}}$

$$
\mathrm{W}=\mathrm{P}^{*} \mathrm{~A}^{*} \Delta \mathrm{x}=\mathrm{P}^{*} \Delta(\mathrm{Ax})=\mathrm{P}^{*} \Delta \mathrm{~V} \quad P V=n R T
$$

At constant pressure the work done by the system is the pressure multiplied by the change in volume.

If there is a change in volume and the pressure changes the work done by the system is the area under the $\mathrm{P}-\mathrm{V}$ graph.

$$
P V=n R T
$$

This is why $\mathrm{P}-\mathrm{V}$ diagrams are so useful in thermodynamics.

$$
\Delta V>0 \Rightarrow W>0 \mid \Delta V<0 \Rightarrow W<0
$$

$$
\begin{aligned}
& \mathrm{P}=\text { const } \quad \Rightarrow \mathrm{F}=\mathrm{PA}=\text { const } \\
& \mathrm{W}=\mathrm{P}^{*} \Delta \mathrm{~V}=\mathrm{P}^{*}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
\end{aligned}
$$

$$
\mathrm{P} \neq \text { const }
$$

$$
\mathrm{W}=\mathrm{P}_{\text {Ave }} * \Delta \mathrm{~V}=\text { Area }(\mathrm{P}-\mathrm{V} \text { graph })
$$

$Q=\Delta U+W_{b y}$ system

$$
P V=n R T
$$

$$
U=\frac{i}{2} P V
$$

$$
U=\frac{i}{2} n R T
$$

$$
n=\frac{m}{M}
$$

$i=3$ - for point-like particles
$i=5 \quad$ ๑for dumbbell-like particles (no oscillations)
$i=6 \quad$ for big particles made of 3 or more atoms (no oscillations)

