Good morning!

Lab 10 is in SCI136

For labs 2 - $\mathbf{1 0}$ the best $\mathbf{8}$ scores out of $\mathbf{9}$ will be used for the final grade calculation
Please, login into webassing, locate
LectureMCQ_L24 (PY105)
and answer question 1

(but ONLY Q1!).
Thank you!

For L245 Q2

For the question on the screen, select the number corresponding to the correct ansv

- 1
$87.3 \% \quad 69$

2

$Q=\Delta U+W_{b y}$ system

$$
P V=n R T
$$

$$
U=\frac{i}{2} P V
$$

$$
U=\frac{i}{2} n R T
$$

$$
n=\frac{m}{M}
$$

$i=3$ - for point-like particles
$i=5 \quad$ ๑for dumbbell-like particles (no oscillations)
$i=6 \quad$ for big particles made of 3 or more atoms (no oscillations)

Calculate the change in the internal energy of a Hydrogen gas that expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant pressure.

$$
\mathrm{PV}=\mathbf{n R T}
$$

$$
U=\frac{i}{2} P V
$$

Webassign: L24 Q3

The work done by the gas
$U=\frac{i}{2} n R T$ during the process is ...

1. < 0
2. $=0$
3. >0

$$
n=\frac{m}{M}
$$

Calculate the change in the internal energy of a Hydrogen gas that expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant pressure.

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
W_{\text {by_gas }} 1 .<0 \quad 2 .=0 \quad 3 .>0
$$

$$
U=\frac{i}{2} n R T
$$

$$
\begin{aligned}
& \because V_{i}=\frac{i}{2} p V_{i} \\
& V_{i}=\frac{i}{2} p V_{1}
\end{aligned}
$$

$$
i=\text { ? }
$$

$$
U=\frac{i}{2} P V
$$

$$
H_{2} \Rightarrow i=5
$$

$$
\Delta V=U_{q}-V_{i}=\frac{5}{2} p \cdot v_{-}-\frac{5}{2} p \cdot V_{i}=\quad P=\cos 2 t
$$

$$
=\frac{5}{2} P \cdot\left(V_{7}-V_{i}\right)=\frac{5}{2} P \Delta V=W=P \cdot \Delta
$$

$$
n=\frac{m}{M}
$$

$$
\begin{aligned}
&=\frac{5}{2} \cdot 300_{0} p_{p} \cdot 42=\frac{5}{2} 300 \cdot x^{\prime} t_{11} 4 \cdot \phi_{m}=v_{4}>v_{i} \Rightarrow \Delta v>0 \\
&==\frac{5}{2} \cdot 300 \cdot 4=3000 \mathrm{~J}
\end{aligned}
$$

Calculate the change in the internal energy of a Hydrogen gas that expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant pressure.

Webassign: L24 Q3
The work done by the gas during the process is ...

$$
\text { 1. }<0 \quad 2 .=0 \quad 3 .>0
$$

$\Delta U=\frac{i}{2} P \Delta V$

Isobaric
$\mathrm{P}=\mathrm{const}$
$\mathrm{V} / \mathrm{T}=$ const

V and T must change!

Calculate the amount of heat a Hydrogen gas absorbs/releases when it expands from an initial volume of 3 L and initial pressure of 300 kPa to a final volume of 7 L at constant pressure.

$$
\begin{aligned}
& P V=n R T \quad Q=c m \Delta t ; Q=\Delta V+W=3000+w \\
& \boldsymbol{n}=\frac{\boldsymbol{m}}{\boldsymbol{M}} \\
& W /=R \Delta V=300 * P_{1} \cdot 4 L=1200 \mathrm{~J} \\
& 3000=\frac{5}{2} \cdot P \cdot \Delta V=\frac{5}{2} \cdot W \quad \Rightarrow W=\frac{2}{5} \cdot \Delta V=\frac{2}{5} \cdot 3000 \\
& \text { if } P=\text { cont } \quad \Delta V=\frac{i}{2} \cdot W \\
& U=\frac{i}{2} n R T \quad U=\frac{i}{2} P V \\
& Q=3000+1200=4200 \mathrm{~J}>0
\end{aligned}
$$

A container of a monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K} . \quad$ The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$ (a) What is the temperature T_{1} of the gas?

$$
\begin{aligned}
& P V=n R T \quad n=\frac{m}{M} \quad Q=\Delta U+W_{\text {by system }} \\
& U=\frac{i}{2} n R T \quad U=\frac{i}{2} P V \quad \mathrm{~W}=\mathrm{P}_{\text {Ave }} * \Delta \mathrm{~V}=\text { Area }(\mathrm{P}-\mathrm{V} \text { graph })
\end{aligned}
$$

A container of a monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K}$. The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$ (a) What is the temperature T_{1} of the gas?

```
\[
P V=n R T
\]
\[
\text { Webassign: } 24
\]
\[
n=\frac{\boldsymbol{m}}{\boldsymbol{M}}
\]
\[
\mathrm{T}_{1}=
\]
\[
U=\frac{i}{2} n R T
\]
\[
\text { 1. } 100 \mathrm{~K}
\]
\[
U=\frac{i}{2} P V
\]
\[
\text { 2. } 200 \mathrm{~K}
\]
\[
\text { 3. } 300 \mathrm{~K}
\]
\[
Q=\Delta U+W_{\text {by system }}
\]
\[
\left.\mathrm{W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\text { Area ( } \mathrm{P}-\mathrm{V} \text { graph }\right)
\]
```

A container of a monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K}$. The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$
(a) What is the temperature T_{1} of the gas?

$$
\begin{aligned}
& P V=n R T \\
& \boldsymbol{n}=\frac{\boldsymbol{m}}{\boldsymbol{M}} \\
& U=\frac{i}{2} n R T \\
& U=\frac{i}{2} P V \\
& P V=\sqrt{n k} T \\
& 20 \times P \cdot 100 L=20 T_{1} \\
& \frac{20 \cdot 100}{20}=T_{1} \\
& Q=\Delta U+W_{\text {by system }} \\
& \mathrm{W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\operatorname{Area}(\mathrm{P}-\mathrm{V} \text { graph })
\end{aligned}
$$

A container of monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K}$. The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$ (a) What is the temperature T_{1} of the gas?

Use the ideal gas law: $P V=n R T$, so: $T_{1}=P_{1} V_{1} / n R=2000 / 20=100 \mathrm{~K}$

A container of a monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K}$. The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$.
(b) If $\mathrm{Q}=2500 \mathrm{~J}$ of heat is added to the gas, and the gas expands at constant pressure, the gas will reach a new equilibrium state 2. What is the final temperature T_{2} ?

A monatomic gas has just the right number of moles; $n R=20 \mathrm{~J} / \mathrm{K}$. The initial state : $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$. (b) If $Q=2500 \mathrm{~J}$ of heat is added to the gas, and the gas expands at constant pressure, what is the final temperature \boldsymbol{T}_{2} ?

Webassign: L24 Q5

1. $P V=n R T$

$$
\begin{aligned}
& \text { 2. } n=\frac{\boldsymbol{m}}{\boldsymbol{M}} \\
& \text { 3. } U=\frac{i}{2} n R T
\end{aligned}
$$

To relate T_{2} and Q we will NOT need to use equation... 1. 2. 3. 4 . 5.

4. $U=\frac{i}{2} P V$
5. $Q=\Delta U+W_{\text {by system }}$
6. $\mathrm{W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\operatorname{Area}$ ($\mathrm{P}-\mathrm{V}$ graph $)$

Amonatomic gas has just the right number of moles; $n R=20 \mathrm{~J} / \mathrm{K}$. The initial state : $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$. (b) If $Q=2500 \mathrm{~J}$ of heat is added to the gas, and the gas expands at constant pressure, what is the final temperature \boldsymbol{T}_{2} ?

Webassian: 24 25

1. $P_{D} V=\underline{n} \underline{R} T \quad$ To relate T2 and Q we will NOT need to use equation...

$$
\begin{array}{lll}
\text { 2. } n=\frac{m}{M} & Q-T & Q . \\
3_{j} U=\frac{i}{2} n R_{\Delta} T & Q=c \cdot m_{0} T & l_{W<P}
\end{array}
$$

4. $U=\frac{i}{2} P V \quad 2500=Q=\Delta V+(x)=\frac{3}{2} n R \cdot \Delta T+P \cdot \Delta V=$
5. $Q=\Delta U+W_{\text {by system }}$
6. $\mathrm{W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\operatorname{Area}(\mathrm{P}-\mathrm{V}$ graph $)$

$$
\begin{aligned}
& \left.+(x)=\frac{1}{2} n R \cdot \Delta\right) T \underbrace{n R_{0}}_{0} T=\Delta T \cdot 20 \cdot\left(\frac{3}{2}+1\right) \\
& =\frac{3}{2} n s^{2}
\end{aligned}
$$

$$
\text { 5. } Q=\Delta U+W_{\text {by system }}
$$

A container of monatomic ideal gas contains just the right number of moles so that $n R=20 \mathrm{~J} / \mathrm{K}$. The gas is in state 1 such that: $P_{1}=20 \mathrm{kPa}$ and $V_{1}=100 \mathrm{~L}$.
(b) If $\mathbf{Q}=2500 \mathrm{~J}$ of heat is added to the gas, and the gas expands at constant pressure, the gas will reach a new equilibrium state 2. What is the final temperature T_{2} ? We've already seen that, at constant pressure for a monatomic ideal gas: $\quad P V=n R T \quad P=$ const $=>\quad W=P \Delta V=n R \Delta T$
$Q=\Delta U+W=(3 / 2) n R \Delta T+n R \Delta T=(5 / 2) n R \Delta T$
Therefore $\Delta T=(2 / 5) Q / n R=1000 / 20=50 \mathrm{~K}$.
$T_{2}=T_{1}+\Delta T=150 \mathrm{~K}$
(c) How much work was done by the gas during the expansion?

$$
W V=P \cdot \Delta V=\underbrace{n R \cdot \Delta T=20 \cdot 50=1000 \mathrm{~J}}_{\Delta V=Q-W=2500-1000=1500 \mathrm{~J}}
$$

(d) What is the final volume V_{2} ?

$$
P_{2} V_{2}=\text { he. } P_{2} \Rightarrow V_{2}=\frac{20.150}{20 * P_{1}}=150 \mathrm{~L}
$$

(c) How much work was done by the gas during the expansion?
$W=P \Delta V=n R \Delta T=20 * 50=1000 \mathrm{~J}$
λ
(This equation is true only for a constant pressure process)
(d)What is the final volume V_{2} ?

One approach is to bring in the ideal gas law again:
$V_{2}=n R T_{2} / P_{2}=20(150) /\left(20 \times 10^{3}\right)=150 \times 10^{-3} \mathrm{~m}^{3}$
$62,325 \mathrm{~J}$ of heat energy is transferred to a system consisting of 30 moles of an ideal gas. If the volume of this gas stays constant at 40 L , calculate the change in the internal energy of the gas.

Webassign: L24 Q6

Webassign: L24 Q7
The work of the gas is

1. >0
2. $=0$
3. < 0
ΔU is
4. $>62,325 \mathrm{~J}$
5. $=62,325 \mathrm{~J}$
6. < 62,325 J
$62,325 \mathrm{~J}$ of heat energy is transferred to a system consisting of 30 moles of an ideal gas. If the volume of this gas stays constant at 40 L , calculate the change in the internal energy of the gas.

Webassign: L24 07
The work of the gas is

1. >0
2. $=0$
3. <0

$$
\begin{aligned}
& V=\text { conot } Q=\Delta U+(X) \\
& W=\phi Q>0 ; W=0 \Rightarrow \Delta U=Q>0 \\
& \Delta U=Q=62325 \mathrm{~J}
\end{aligned}
$$

Webassian:_24 08
A diatomic gas is a subject of three different processes. The work done on the gas during process $2->3$ is ... $\begin{array}{lll}1 .<0 & 2 . & =0\end{array} \quad 3 .>0$

$$
n R=300 \mathrm{~J} / \mathrm{K}
$$

$$
P_{1}=600 \mathrm{kPa} \quad P V=n R T \quad Q=\Delta U+W_{\text {by system }}
$$

$$
P_{3}=200 \mathrm{kPa}
$$

$$
\begin{aligned}
& V_{1}=40 \mathrm{~L} \\
& V_{2}=120 \mathrm{~L}
\end{aligned} \quad U=\frac{i}{2} n R T \quad U=\frac{i}{2} P V
$$

$$
n=\frac{m}{\boldsymbol{M}}
$$

$$
W_{b}=-W_{o n}
$$

$$
\mathrm{W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\operatorname{Area}(\mathrm{P}-\mathrm{V} \text { graph })
$$

Webassian:L24 18
A diatomic gas is a subject of three different processes. The work done on the gas auring process 2 -> 3 is ... 1. <0
2. $=0$
3. >0

$$
\begin{gathered}
P V=n R T \quad Q=\Delta U+W_{\text {by system }} \\
U=\frac{i}{2} n R T \quad U=\frac{i}{2} P V \quad n=\frac{m}{M} \\
\mathrm{~W}=\mathrm{P}_{\mathrm{Ave}} * \Delta \mathrm{~V}=\text { Area }(\mathrm{P}-\mathrm{V} \text { graph })
\end{gathered}
$$

A diatomic gas is a subject of $k_{2} \hbar$ three different processes. v_{2} Calculate the work done by the gas during process 1->2

$$
V_{1 \rightarrow 2} \nearrow \Rightarrow W>0
$$

$$
n R=300 \mathrm{~J} / \mathrm{K}
$$

$$
P_{1}=600 \mathrm{kPa}
$$

$$
W /=A=P_{1} \cdot \Delta V=P_{1} \cdot\left(V_{2}-V_{3}\right)=
$$

$$
P_{3}=200 \mathrm{kPa}
$$

$$
=600 \cdot k \mathrm{~Pa} \cdot(120-40)_{L}=
$$

$$
\frac{V_{1}=40 L}{V_{2}=120 L}=V_{3}
$$

$$
=600.80=48000 \mathrm{~J}
$$

$$
W_{3 \rightarrow 2}=\varnothing \quad W_{2 \rightarrow 3}=A_{\square}=-\left|A_{\square}\right| ; W_{d=}=W_{1+2} W_{2 \rightarrow+1}+w_{24}
$$

Steam Engines
James Watt and the steam engine

