Good morning!

Please, sign in, login into webassing, locate LectureMCQ_L3 (PY105) and answer question 1 (but ONLY Q1!)

Lab 2 is in SCI 134

Enabled: Statistics Tracking

Textbook

some old exams Enabled: Adaptive Release

Equation sheets

Enabled: Statistics Tracking

IL (labs)

Enabled: Adaptive Release, Statistics Tracking

Old S

Old Slides (2017)

Enabled: Adaptive Release, Statistics Tracking

EchoCenter

Math_Answers

Enabled: Statistics Tracking

LectureMCQ_L1 (PY105) Testing webassign acount **FCI - pretest** Math Self Test for PY105 **Pre-Survey for PY105** LectureMCQ_L2 (PY105) PY105 HW1 P1 (S2018) PY105 HW1 P3 (S2018) PY105 HW1 P2 (S2018) PY105 HW1 P4 (S2018) PY105 HW1 practice problems

Practice makes results

1) For 6 seconds a fly flies 4 m West, makes a U-turn and for 4 more seconds flies 3 m East. What is the *magnitude* of its average velocity? LectureMCQ L3 Q2 **Problems** are 1. the same 2 different 2) For A seconds a fly flies B m West, makes a U-turn and for C more seconds flies D m East. What is the *magnitude* of its average velocity?

For 6 seconds a fly flies 4 m West, makes a U-turn and for 4 more seconds flies 3 m East. What is the *magnitude* of its average velocity?

Both are AVERGAGE!

The difference between AVERAGE and INSTANTANEOUS

The difference between AVERAGE and INSTANTANEOUS

- While driving a car, the speedometer shows ...
- 1. Average velocity
- 2. Average speed
- 3. Instantaneous velocity
- 4. Instantaneous speed

- While driving a car, the speedometer shows ...
- 1. Average velocity
- 2. Average speed
- 3. Instantaneous velocity
- 4. Instantaneous speed

Instantaneous vs. average values

When driving, what, in your car, would you use to find your *instantaneous speed*? The speedometer.

When you pass the state trooper on the Mass Pike, is the trooper interested in your *average speed or your instantaneous speed*? Your instantaneous speed.

If you drive from Boston to New York City, what, in your car, would you use to find your *average speed* for the trip? The odometer and the clock. From A. Duffy

The *average* rate of change of displacement

$$\boldsymbol{v}_{ave} = \frac{\Delta \boldsymbol{x}}{\Delta \boldsymbol{t}}$$

Velocity Instantaneous The instantaneous rate of change of displacement ("instantaneous displacement over tiny time") Δt

In general: $L \neq \Delta X$ Speed (the rate of change in distance) =

Average speed

= total distance traveled on average every second

 $v_{ave} = \frac{L}{\Delta t}$ Both canNOT be < 0

Instantaneous speed

= the magnitudeof theinstantaneousvelocity

A $t = t_f$ velocity is 1. positive 2. zero 3. negative

What does negative velocity mean?

Motion with constant velocity (MCV)

X = m*t*+b

Motion equation: $X = X_i + v \cdot t$

Write motion equations for each part of the trip Position X (m) = 7 3(+(18 <u>[]</u> TI X= X: + V. + 1 $X = D; \quad X = \frac{7}{1}$ 23 25 18 20 3 5 15 10 Time t(s)X= 0+ =++ X= =+, $\begin{array}{l} + \times + \\ + \\ \vdots \\ \\ \vdots \\ \\ \vdots \\ \\ \end{array}$ o< t<3 -=- = ; X=7- =+ >D-7 25-18 X4 X=7

4. 7/23 m/s 5. 23 /7 m/s. 6. does not exist

When velocity <u>changes</u>

"Speeding up" An object is moving faster and faster Speed NOT velocity! increases

"Slowing down" An object is moving slower and slower \rightarrow Speed decreases

X > 0X < 0X 0 $v_x < 0$ $v_x > 0$ $a_x < 0$ $a_{x} > 0$ $v_x > 0$ $v_x < 0$ OR AND AND Speeding up $a_{x} > 0$ $a_x < 0$ $v_x < 0$ $v_x > 0$ Slowing AND OR AND down $a_x > 0$ $a_x < 0$

Which picture shows a speeding up (slowing down) car?

Which picture shows a speeding up (slowing down) car?

- A driver driving due West suddenly sees a deer and applies the breaks. What is the direction of the acceleration of the driver's car?
- 1. West
- 2. North
- 3. East
- 4. South

- A driver driving due West suddenly sees a deer and applies the breaks. What is the direction of the acceleration of the driver's
- car?

4. South

Average acceleration

a_{ave} =
$$\frac{v_2 - v_1}{t_2 - t_1}$$

= the slope of the line passing initial and final velocities on the velocity graph v(t): = the slope of the line tangent to the velocity graph v(t):

Instantaneous acceleration Instantaneous

Motion with Constant Acceleration (MCA)

Acceleration is a **vector** representing the <u>rate</u> and <u>direction</u> of the <u>change</u> of velocity.

Average acceleration $\mathbf{a}_{avg} \equiv (\mathbf{v}_2 - \mathbf{v}_1)/(t_2 - t_1)$ In the limit that the time interval approaches zero, the average acceleration equation gives the <u>instantaneous</u> acceleration.

Note that acceleration has the same relation to velocity as velocity has to position.

For MCA
$$a_{inst} = a_{ave} = \frac{v_2 - v_1}{t_2 - t_1}$$
 for any two t_1 and t_2 (!)

MCA: motion with <u>constant</u> acceleration

<u>Average</u> acceleration = <u>Instantaneous</u> acceleration

LAB 2

Constant-acceleration equations

These equations relate displacement, velocity, acceleration, and time, and apply under the following conditions:

- the acceleration is constant
 => a_{ave} = a_{inst} = a
- the motion is measured from t = 0 => $\Delta t = t$

$$\mathbf{v} = \mathbf{v}_i + \mathbf{a}t$$

 $\mathbf{x} = \mathbf{x}_i + \mathbf{v}_i t + \frac{1}{2}\mathbf{a}t^2$

$$\boldsymbol{v}^2 = \boldsymbol{v}_i^2 + 2\boldsymbol{a}(\boldsymbol{x} - \boldsymbol{x}_i)$$

Everything except the time *t* is a vector component – a scalar with a sign. The appropriate plus or minus sign indicates the direction of the vector.

 $v_{ave} = (v_0 + v_f)/2 \iff (prove it!)$ These equations can be used for 1-D motion with constant acceleration (usually along the x-axis pointing to the right).

Learned!

Physical terms/parameters/quantities used to describe motion: position, trajectory, path, origin, reference frame, coordinate, position vector, radiusvector, displacement, magnitude of the displacement, distance traveled, time of motion, elapsed time, average velocity, average speed, instantaneous velocity, instantaneous speed, average acceleration,

$\frac{MCA}{v = v_i + a^*t}$	For motion equation $x = 24t - 6t^2 + 6$
$x = x_i + v_i^* t + 1/2 * a^* t^2$	
Find: position and velocity at $t = 1 \text{ s}, 2 \text{ s}, 3 \text{ s}$.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\chi = 6 \text{ m}$ $\chi = 24 \text{ m/s}$ $a = -12 \text{ m/s}$ $24 = 12 \text{ K} - 6 \text{ t} = \pm a t^2 \text{ s}^2$	

An object was moved to the left from rest with a constant acceleration. How much time did it take to reach the speed of 15 m/s, if the magnitude of the acceleration is 5 m/s²? What was the distance traveled?

An object was moved to the left from rest with a constant acceleration. How much time did it take to reach the speed of 15 m/s, if the magnitude of the acceleration is 5 m/s²? What was the distance

The airplane lands with an initial velocity of 70.0 m/s, after traveling 500 m slows to velocity of 10.0 m/s before heading for the terminal. What was the acceleration of the plain?

 $v_0 = 70.0 \text{ m/s}$ $v_0 = 70.0 \text{ m/s}$ $v_0 = 10.0 \text{ m/s}$ M C AThe airplane lands with an initial velocity of 70.0 m/s after traveling 500 m slows to velocity of 10.0 m/s before heading for the terminal. What was the acceleration of the

$$V = V_{i} \neq a \neq 1$$

$$X = X_{0} + V_{i} + \frac{1}{2} a \neq 2$$

$$V_{1}^{2} = V_{i}^{2} + 2 \cdot a \cdot a \times 1$$

$$V_{2} = \frac{1}{70^{2}} + 2 \cdot a \cdot 500$$

$$I0^{2} = \frac{1}{70^{2}} + 2 \cdot a \cdot 500$$

- 1) A small ball was released from rest from a window 4.9 m above the ground. The ball hits the ground 1 second later. Find the acceleration of the ball.
- 2) If the same ball was shot straight up with the same acceleration and the initial speed of 10 m/s, how high would

it go?

1) A small ball was <u>released</u> from rest from a window 4.9 m above the ground. The ball hits the ground 1 second later. Find the acceleration of the ball.

