Good morning!

Please, sign in, login into webassing, locate LectureMCQ_L3 (PY105) and answer question 1 (but ONLY Q1!)

Lab 2 is in SCI 134Slides

some old exams
Enabled: Adaptive Release

Equation sheets
Enabled: Statistics Tracking

IL (labs)

Enabled: Adaptive Release, Statistics TrackingOld Slides (2017)
Enabled: Adaptive Release, Statistics Tracking

EchoCenter

Math Answers
Enabled: Statistics Tracking

LectureMCQ_L1 (PY105) Testing webassign acount FCI - pretest
Math Self Test for PY105
Pre-Survey for PY105
LectureMCQ_L2 (PY105)
PY105 HW1 P1 (S2018)
PY105 HW1 P3 (S2018)
PY105 HW1 P2 (S2018)
PY105 HW1 P4 (S2018)
PY105 HW1 practice problems

Practice makes results

1) For 6 seconds a fly flies 4 m West,

 makes a U-turn and for 4 more seconds flies 3 m East. What is the magnitude of its average velocity? LectureMCQ L3 Q2 Problems are 1. the same 2 different2) For A seconds a fly flies B m West, makes a U-turn and for C more seconds flies D m East. What is the magnitude of its average velocity?

For A seconds a fly flies B m West, makes a U-turn and for C more seconds flies D m East. What is the magnitude of its average velocity?

$$
x_{i}=L_{1}=B
$$

1) w: $\quad V_{1 \text { AEC }}=\frac{x_{11}-x_{1}}{D_{1} 1}=\frac{0-L_{1}}{A}$

$$
x_{f}=L_{2}=0
$$

2) E
$V_{2 \text { tue }}=\frac{x_{t_{2}-x_{i 2}}}{\Delta t_{2}}=\frac{D-0}{C}$

$$
x_{w}=0
$$

3) Tote:
$V_{\text {toter }}=\frac{X_{f_{t}-x_{t} t}}{\Delta t_{t}}=\frac{L_{2}-L_{1}}{A+C}$
physics is done. Math lexis

For 6 seconds a fly flies 4 m West, makes a U-turn and for 4 more seconds flies $\mathbf{3} \mathbf{~ m}$ East. What is the magnitude of its average velocity?

The difference between SPEED and VELOCITY \longrightarrow
 average velocity $=$ net displacement - total time
 Names!
 average speed $=\frac{\text { total distanc }}{\text { total time }}$
 Equations!
 Both are AVERGAGE!

The difference between AVERAGE and INSTANTANEOUS

instantaneous velocity $=\vec{v}=$

$\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}$ INSTANTANEOUS = AVERAGE over a tiny time interval! $\quad \boldsymbol{t}_{2}$ is almost $=\boldsymbol{t}_{1}$

The difference between AVERAGE and INSTANTANEOUS
1D, 2D - motion Instantaneous velocity
average velocity $=\frac{\text { net displacement }}{\text { total time }}$, or, $\vec{v}=\frac{\Delta \vec{r}}{\Delta t}$
instantaneous velocity $=\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}$
Instantaneous speed $=\mid$ instantaneous velocity \mid

LectureMCQ L3 Q3

While driving a car, the speedometer shows

1. Average velocity
2. Average speed
3. Instantaneous velocity
4. Instantaneous speed

LectureMCQ L3 Q3

While driving a car, the speedometer shows

1. Average velocity
2. Average speed
3. Instantaneous velocity
4. Instantaneous speed

Instantaneous vs. average values

When driving, what, in your car, would you use to find your instantaneous speed? The speedometer. When you pass the state trooper on the Mass Pike, is the trooper interested in your average speed or your instantaneous speed? Your instantaneous speed.

If you drive from Boston to New York City, what, in your car, would you use to find your average speed for the trip? The odometer and the clock.

1D-M

The average rate of change of displacement

$$
v_{a v e}=\frac{\Delta x}{\Delta t}
$$

displacement ("instantaneous displacement over tiny time")

$$
\bar{x}=\left.\frac{\Delta x}{\Delta t}\right|_{\substack{\Delta x \rightarrow 0 \\ \Delta t \rightarrow 0}}
$$

In general: $L \neq \Delta X$

 Speed (the rate of change in distance) $=$
Average speed

= total distance traveled on average every second

Instantaneous speed

= the magnitude of the instantaneous velocity

$$
\left.v=\left|\frac{\Delta x}{\Delta t}\right|_{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}} \right\rvert\,
$$

The average rate of change of displacement

The instantaneous instantaneous velocity: rate of change of $\quad x(t)$ graph. displacement

$$
v_{\text {ave }}=\frac{\Delta x}{\Delta t} \quad v=\frac{\Delta x}{\Delta t}
$$

Instantaneous

$$
\Delta x=x_{f}-x_{i}
$$

Displacement
 the line tangent to the position graph $x(t)$: coordinates on the position graph $x(t)$:

$$
v_{\text {ave }}=\frac{\Delta x}{\Delta t} \quad \text { Both can be }<, \text { or } 0, \text { or }>0
$$

$$
v=\left.\frac{\Delta x}{\Delta t}\right|_{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}}
$$

What does negative velocity mean?

Motion with constant velocity (MCV)

$$
V_{A V E}=V_{I N S T}=V
$$

$$
v=\left.\frac{\Delta x}{\Delta t}\right|_{\substack{\Delta t \rightarrow 0 \\ \Delta x \rightarrow 0}}=v_{a v e}=\frac{\Delta x}{\Delta t}=m
$$

$X=\mathbf{m} \boldsymbol{t}+\mathbf{b}$
Motion equation: $\quad X=X_{i}+v * t$

Write motion equations for each part of the trip $X(m)$

(11) $x_{2}=7$
$3<+<18$
(1)
(111)
$x=x_{i}+x_{t}$
$x_{i}=7 ; v=\frac{-z}{5_{0-7}}$
$x=0+\frac{7}{3} \cdot+$

Position $X(m)$

Average velocity for the whole trip is ...

1. $-17 \mathrm{~m} / \mathrm{s}$
2. $-4 \mathrm{~m} / \mathrm{s}$
3. $0 \mathrm{~m} / \mathrm{s}$
$5.23 / 7 \mathrm{~m} / \mathrm{s}$.
4. does not exist

$$
V_{A K L}=\frac{D X}{A t}=\frac{0-0}{23}
$$

When velocity changes

"Speeding up"
 An object is moving faster and faster

Speed - Not velocity \rightarrow Speed increases
decreases

"Slowing down"

An object is moving slower and slower +

1-D motion A SLIDING CART = MCA !

Average velocity
Average speed
$v_{x}=\frac{\Delta x}{\Delta t}$

$$
v=\frac{L}{\Delta t} \longleftarrow \text { distance }
$$

AND!
a new definition:
Average Acceleration

$$
\mathrm{a}_{\mathrm{ave}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

$$
x<0
$$

$$
x>0
$$

$$
\xrightarrow{v_{x}>0} \quad \stackrel{v_{x}<0}{v_{x}>0} \quad \underset{\longrightarrow}{a_{x}<0}
$$

$$
v_{x}>0
$$

$$
v_{x}<0
$$

$$
A N D \quad O R \quad A N D
$$

$$
\xrightarrow{a_{x}>0} \quad a_{x}<0
$$

Speeding up

$\xrightarrow[\text { AND }]{v_{x}>0}$ OR \quad| $a_{x}<0$ |
| :--- |\quad| $v_{x}<0$ |
| :--- |
| $a_{x}>0$ |

Slowing down

Which picture shows a speeding up (slowing down) car?

a)

Speeding up

b)

Slowing down

Which picture shows a speeding up (slowing down) car?
a)

b)

LectureMCQ L3 Q6

A driver driving due West suddenly sees a deer and applies the breaks. What is the direction of the acceleration of the driver's car?

1. West
2. North
3. East
4. South

LectureMCQ L3 Q6

A driver driving due West suddenly sees a deer and applies the breaks. What is the direction of the acceleration of the driver's car?

1. West
2. North
3. East
4. South

Average acceleration
$\mathrm{a}_{\mathrm{ave}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$

$=$ the slope of the line passing initial and final velocities on the velocity graph $v(t)$:

Instantaneous

 accelerationInstantaneous
$=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$

$$
t_{2} \rightarrow t_{1}
$$

$=$ the slope of the line tangent to the velocity graph v(t):

Acceleration is a vector representing the rate and direction of the change of velocity.

Average acceleration $\mathbf{a}_{\text {avg }} \equiv\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$ In the limit that the time interval approaches zero, the average acceleration equation gives the instantaneous acceleration.

Note that acceleration has the same relation to velocity as velocity has to position.

$$
\text { For MCA } \underline{a}_{\underline{\mathrm{inst}}}=\boldsymbol{a}_{\mathrm{ave}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \text { for any two } \mathbf{t}_{1} \text { and } \mathrm{t}_{2}(!)
$$

MCA: motion with constant acceleration

 $\underline{\text { Average }}$ acceleration $=\underline{\text { Instantaneous acceleration }}$
Average acceleration

$$
\mathrm{a}_{\mathrm{ave}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

Constant acceleration = constant slope on velocity graph => straight line!

Instantaneous acceleration
$\mathrm{a}=\frac{\nu_{2}-v_{1}}{t_{2}-t_{1}}$ Instantaneous

$$
\begin{gathered}
\mathbf{a}_{\text {inst }}=\lim _{\Delta \Delta \rightarrow \infty} \frac{v_{2}-v_{1}}{\Delta t} \\
\mathrm{a}_{\mathrm{ave}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
\end{gathered}
$$

$a_{\text {ave }}=a_{\text {inst }}=a$
acceleration
$a_{\text {ave }}=a_{\text {inst }}=a$

Velocity equation:
$v=v_{0}+a t$

Velocity equation
$\boldsymbol{V}=\boldsymbol{m} * \boldsymbol{t}+\boldsymbol{b} \quad b=v_{i}=$ initial velocity
$v=v_{i}+\vec{a} * t$
$m=a=$ acceleration
$x=$???
$x=? ? ?$

LAB 2

Velocity equation

Motion equation

$\boldsymbol{V}=\boldsymbol{m} * \boldsymbol{t}+\boldsymbol{b} \quad \boldsymbol{B}=b=v_{\mathrm{i}}=$ initial velocity $\boldsymbol{X}=\boldsymbol{A} * \boldsymbol{t}^{2}+\boldsymbol{B} * \boldsymbol{t}+\boldsymbol{C}$
$\boldsymbol{V}=\boldsymbol{V}_{\mathbf{i}}+\mathbf{a} * \boldsymbol{t} \quad A / 2=m=a=$ acceleration $\quad x=X_{i}+V_{i} * t+1 / 2 * \mathbf{a} * t^{2}$

Constant-acceleration equations

These equations relate displacement, velocity, acceleration, and time, and apply under the following conditions:

- the acceleration is constant $\Rightarrow a_{\text {ave }}=a_{\text {inst }}=a$
- the motion is measured from $t=0 \quad=>\Delta \boldsymbol{t}=\boldsymbol{t}$

$$
\begin{aligned}
v & =v_{i}+a t \\
x & =x_{i}+v_{i} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
v^{2}=v_{i}^{2}+2 a\left(x-x_{i}\right)
$$

$v_{\text {ave }}=\left(v_{0}+v_{f}\right) / 2 ฬ$ (prove it!)

Everything except the time t is a vector component - a scalar with a sign. The appropriate plus or minus sign indicates the direction of the vector.

These equations can be used for 1-D motion with constant acceleration (usually along the x-axis pointing to the right).

Types of 1 - D motion

Depending on the rate of change of

 the position, a.k.a. velocity: Rest
MCV

MCA

$X=C \quad V=0$

$$
\begin{gathered}
X=\mathrm{m} t+\mathrm{b} \\
\vec{v}_{A V E}=\vec{v}_{\text {INST }}
\end{gathered}
$$

$$
x=a t^{2}+b t^{t}+c
$$

Combined
Other (Any/General)

Learned!

Physical terms/parameters/quantities used to describe motion:
position, trajectory, path, origin, reference frame, coordinate, position vector, radiusvector, displacement, magnitude of the displacement, distance traveled, time of motion, elapsed time, average velocity, average speed, instantaneous velocity, instantaneous speed, average acceleration,

=> Practice

$$
\begin{array}{c|c}
\begin{array}{c}
M C A \\
v=\frac{v_{i}+a^{*} t}{} \\
x=x_{i}+v_{i}^{*} t+1 / 2{ }^{*} a^{*} t^{2}
\end{array} & \begin{array}{l}
\text { For motion equation } \\
\hline
\end{array} \\
\hline \mathbf{2 4 t - 6 t ^ { 2 } + 6} \\
\hline
\end{array}
$$

Find: position and velocity at $\boldsymbol{t}=1 \mathbf{\mathrm { s }}, \mathbf{2 \mathrm { s } , 3 \mathrm { s }}$.

$$
\begin{aligned}
& X=6 \mathrm{~m} \quad X_{i}=24 \mathrm{~m} / \mathrm{s} \quad a= \\
& 24=V_{U} \quad-6 \cdot t^{2}=\frac{1}{2} a t^{2} . \rightarrow \rightarrow^{-12 \mathrm{~m} / \mathrm{s}^{2}}
\end{aligned}
$$

$$
x=6+24 t-6 \cdot t^{2}
$$

$$
\overbrace{-A}
$$

$$
X_{m}=6+24 \cdot 2-6 \cdot 2^{2}
$$

$$
\begin{aligned}
& V=y_{i}+a . t \\
& V=24-12 . t \\
& \underbrace{c|c| c} \\
& 0=24-12 \cdot f_{m} \Rightarrow f_{m}=23
\end{aligned}
$$

An object was moved to the left from

 rest with a constant acceleration. How much time did it take to reach the speed of $15 \mathrm{~m} / \mathrm{s}$, if the magnitude of the acceleration is $5 \mathrm{~m} / \mathbf{s}^{2}$? What was the distance traveled?An object was moved to the left from rest with a constant acceleration. How much time did it take to reach the speed of $15 \mathrm{~m} / \mathrm{s}$, if the magnitude of the acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$? What was the distance

The airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$, after traveling 500 m slows to velocity of $10.0 \mathrm{~m} / \mathrm{s}$ before heading for the terminal. What was the acceleration of the plain?

The airplane lands with an initial velocity of $70.0 \mathrm{~m} / \mathrm{s}$ after traveling 500 m slows to velocity of $10.0 \mathrm{~m} / \mathrm{s}$ before heading for the terminal. What was the acceleration of the plain?

1) A small ball was released from rest

 from a window 4.9 m above the ground. The ball hits the ground 1 second later. Find the acceleration of the ball.2) If the same ball was shot straight up with the same acceleration and the initial speed of $10 \mathrm{~m} / \mathrm{s}$, how high would it go?
3) A small ball was released from rest from a window 4.9 m above the ground. The ball hits the ground 1 second later. Find the acceleration of the ball.

