No Labs today

1. Please pick up your exam (but only yours!!)
The grades and the solution are on BB.

Note: exam room change:
Exams 2,3 take place in STO B50

Good morning!
2. Please, login into webassing,
locate LectureMCQ_L9
(PY105) and answer
question 1 (but ONLY Q1!)

LectureMCQ_L9 Question 2!

Please, asses your expectation regarding the exam 1. The Exam was much harder than I expected
2. The Exam was somewhat harder than I expected
3. The Exam was about as I expected
4. The Exam was somewhat easier than I expected
5. The Exam was much easier than I expected
6. The Exam was way too short.
7. I am still in the fog, cannot remember anything what happened yesterday
8. I took PY211 exam by mistake, it was OK

LectureMCQ_L9 Question 2!

1 The Exam was much harder than I expected 6.10\% 52 The Exam was somewhat harder than I expected 25.6\%213 The Exam was about as I expected
45.1\%

374 The Exam was somewhat easier than I expected
17.1\% 14

5 The Exam was much easier than I expected
$3.66 \% \quad 3$6 The Exam was way too short.7 I am still in the fog, cannot remember anything what happened yesterday $2.44 \% \quad 2$

40	39	38.3	36	33.3	Exam1
40	39	38.3	36	32.8	
40	39	38	35.8	32.8	22.8
39.8	39	38	35.5	32.5	22.5
39.8	39	37.8	35.5	32.3	19.5
39.8	38.8	37.8	35.5	32	
39.5	38.8	37.5	35.5	30.5	
39.5	38.8	37.5	34.8	30	
39.5	38.5	37.5	34.8	30	
39.5	38.5	37.5	34.5	29.8	Average:
39.5	38.5	37.5	34.5	29	35.4773
39.3	38.5	37	34.3	28.8	
39.3	38.5	36.5	34	27.8	out of 40
39.3	38.5	36.3	34	27.8	
39.3	38.5	36.3	33.8	26.3	
39	38.5	36	33.3	23.8	
39	38.3		33.3	23.5	

Out of 100%

$90-100$	53
$80-89$	21
$70-79$	6
$60-69$	3
$50-59$	4
$40-49$	1

Average:
88.69
out of 100

THE MEANING SENTENCES =

 LIST OF ACTIONS
Problems:

 1.HW2.Lectures 3.Units (IL)

Practice exams

SENTENCES

WORDS

Exam problems similar Train yourself in recognition!
Some helpful questions for solving physices problems (poges 12)
 processes they are involved into)
2. What
imporpertios of the objects and the processos might be i. imortant thysical quantities should be used for describing those proportios, what connections might be important?
5. What taws or definitions should bo used to describe important
 . Could 1 solve a similar problem anain? How much time would 1 t take?

Practice makes results

Practice problems

Practice exams

Next topics (do not read this slide)

Friction, kinetic energy, work, work-force connection, forceposition graph, power, power-force connection, work-kinetic energy theorem, conservative force, potential energy, gravitational potential energy, mechanical energy, nonconservative force, law of conservation of energy, impulse of a force, linear momentum, force-tine graph, closed (isolated) system, law of conservation of linear momentum, a collision, elasticity, four types of collisions, methods for solving collision problems, center of mass (COM), calculating COM, Circular motion (CM), circumference, radius, uniform circular motion (UCM), period, frequency, centripetal acceleration, properties of horizontal UCM, properties of vertical UCM, properties of vertical CM.

HW2P1 recommended deadline $=6 / 8$

 actual deadline = 6/17 11 pmHW2P2 recommended deadline $=6 / 10$ actual deadline $=6 / 1711 \mathrm{pm}$

FRICTION!

Force of friction is equal to the component of the contact force which is parallel to the surface.

Static friction: prevents objects from moving

Kinetic friction: opposes the motion

When the two surfaces are

 not sliding across one another the friction is called static friction.Static friction is the reason we can walk and cars can move!

Static friction between two surfaces works in a similar way with two gears attached to each other.

Viewed under a microscope, a surface generally looks rough. Surfaces put together make contact at very few places. When trying to move past each other, the high parts on each surface get stuck on one another.

When the two surfaces are not sliding across one another the friction is called static friction.

```
Static friction is the reason we can walk and cars can move!
```

Crers

Static friction between two surfaces works in a similar way with two gears attached to each other.

Viewed under a microscope, a surface generally look rough. Surfaces put together make contact at very few places. When trying to move past each other, the high parts on each surface get stuck on one another.

When movement just begins

Force of static

 friction may have ANY magnitude between 0 and its maximum value.
Coefficient of static friction

Kinetic friction opposes the relative sliding motion motions that actually does occur.

$$
\begin{aligned}
& \boldsymbol{F}_{\mathrm{fr}}=f_{k}=\mu_{k} F_{N} \\
& \boldsymbol{\mu}_{k}=\frac{\boldsymbol{F}_{k f r}}{\boldsymbol{F}_{N}}
\end{aligned}
$$

$$
\square
$$

More "contacting teeth" but less deep into each other.
is called the coefficient of kinetic friction. Webassign: L9 Q3
The unit of μ is ...
$\begin{array}{lllll}\text { 1. } \mathrm{N} & \text { 2. kg } & \text { 3.s } & \text { 4. moo } & \text { 5. none }\end{array}$

Kinetic friction opposes the relative sliding motion motions that actually does occur.
$\boldsymbol{F}_{f r}=f_{k}=\mu_{k} F_{N}$
$\boldsymbol{\mu}_{\boldsymbol{k}}=\frac{\boldsymbol{F}_{\boldsymbol{k}_{\sim} / \mathrm{r}}}{\boldsymbol{F}_{N}}$
is called the coefficient of kinetic friction.

The unit of μ is ...

1. $\mathrm{N} \quad 2 . \mathrm{kg} \quad 3 . \mathrm{s} \quad$ 4. moo
2. none

Find the minimum force which brings the box into a motion, if $\mu_{\text {st }}=0.8$

Find, what should the value of the coefficient of kinetic friction be equal to in order to push the box at constant velocity?

Find, what should the value of the coefficient of kinetic friction be equal to in order to push the box at constant velocity?

$$
\vec{a}=0 \quad \vec{y}=\text { cont }
$$

You pushed the box. The initial speed of the box right after the push was $15 \mathrm{~m} / \mathrm{s}$. If the coefficient of kinetic friction is 0.4 , find the distance traveled by the box before it stops.

You pushed the box. The initial speed of the box right after the push was $15 \mathrm{~m} / \mathrm{s}$. If the coefficient of kinetic friction is 0.4 , find the distance traveled by the box before it stops.

$$
\begin{aligned}
& F_{N}=m \cdot 10 \\
& F_{f_{r}}=m \cdot a
\end{aligned} \left\lvert\, \begin{gathered}
\\
F_{H}=\mu_{t} \cdot F_{N} \\
\mu_{T}=0.4
\end{gathered}\right.
$$

$$
\text { w.a }=F_{1 F}=\mu_{A} \cdot F_{N}=\mu_{A} \cdot \text { wh } \cdot 10
$$

$$
\left.V_{4_{x}}^{2}=V_{i_{r}}^{2}+2 \cdot a_{i} j_{x} \quad 0=15^{2}+2 \cdot(-4)\right\} ; j=\frac{15^{2}}{2 \cdot 4}
$$

ENERGY

WORK

Linear momentum

Some Forms of Energy

Kinetic E: $\quad K E=\frac{m v^{2}}{2}$
Gravitational $\quad G P E=m g y \quad(y-$ axis is $U P)$ potential E:

Work done by const $\boldsymbol{F} W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta$
$\mathrm{J}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$
1 calorie $=4.18400$ joules

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

Power is the rate at which work is done.
Power shows how fast the work is
done (how fast the energy is changing).
The SI unit for power is the watt (W).
(Note: $1 \mathrm{~W}=1 \mathrm{Jls} \quad 1 \mathrm{hp}=746 \mathrm{~W}$)

$$
P=|\vec{F}| *|\vec{v}| * \cos \theta
$$

θ is the angle between the force (which is doing the work) and the velocity of the object.

Gravitational potential E:

 $G P E=m g y \quad(y-$ axis is $U P)$
Webassign: L9 Q4

Where can we chose the origin?

1. Above the ground
2. At the initial location
3. Anywhere
4. At the center

Gravitational
$G P E=m g y \quad(y-$ axis is $U P)$ potential E:
1.Must direct Y- axis UP 2. GPE depends
on our choice of
ZERO level! We can
chose it anywhere!

KE is always positive (or 0)

$$
\text { Kinetic E: } K E=\frac{m v^{2}}{2} \quad \geq 0
$$

Gravitational potential E:

$$
G P E=m g y \quad(y-\text { axis is } U P)
$$

Is GPE always positive? 1. Yes 2. No

Work done by ANY

 constant force

Magnitude of the force
An actual angle between the force and the displacement

Work done by a normal force

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

Webassign: L9 Q5

You push a box applying a force (as shown in the picture).
The work done by the normal force is ...

$$
\begin{array}{lll}
\text { 1. }<0 & \text { 2. }=0 & 3 .>0
\end{array}
$$

Work done by a normal force

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

valbu@bu.edu

You push a box applying a force (as shown in the picture).
The work done by the normal force is ...

$$
\cos 90^{\circ}=\phi
$$

$$
W=\underline{F}|\cdot| 3 \mid \cdot \phi=\phi \mathrm{J}
$$

Work done by a normal force

$$
W_{c F}=|\stackrel{\rightharpoonup}{F}| *|\vec{S}| * \cos \theta
$$

You push a box applying a force (as shown in the picture).
The work done by the normal force is ...

$$
\text { 1. }<0 \quad \text { 2. }=0 \quad 3 .>0
$$

Work done by ANY

 constant force

$W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta$

Work done by force of gravity

 Drop; Toss; Slide; Project; Shoot; Kick; Push! $W_{c F}=|\vec{F}|^{*}|\vec{S}| * \cos \theta$(y - axis is UP!)

Work done by force of gravity
Drop; Toss; Slide; Project; Shoot; Kick; Push!

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta \quad \vec{F}=\operatorname{mon}=\operatorname{con} t: W \mid W=\text { my } \cdot \overparen{|o r| \cdot \cos \theta}
$$

$$
\mid x=m_{f}\left(x_{1}-x\right)
$$

Work done by force of gravity

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

$$
W_{g}=m g \cdot \Delta r \cdot \cos \theta=m g\left(y_{1}-y_{2}\right)
$$

$$
(y-\text { axis is UP!) }
$$

Drop; Slide; Project!

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

You push a 4 kg box 2 m to the right applying 14 N force at 60^{0}. Find the work done by the force of gravity.

1. -8 J
2. -4 J
3. 0 J
4. 4 J
5. 8 J
6. None of the above

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

You pushed a 4 kg box 2 m to the right
 applying 14 N force at 60°. Find the work done by the force of gravity. $\quad W_{c F}=|\vec{F}|^{*}|\vec{S}| * \cos \mathbf{9 0}{ }^{\circ}=\mathbf{0}$ $\begin{array}{ll}\text { 1. }-8 \mathrm{~J} \\ \text { 2. }-4 \mathrm{~J}\end{array} W_{g}=m g \cdot \Delta r \cdot \cos \theta=m g\left(\underline{y}_{1}-\underline{y}_{2}\right)=0$ 3. 0 J 4. 4 J 5. 8 J

6. None of the above

Work done by an applied force

$$
W_{c F}=|\vec{F}| *|\vec{S}| * \cos \theta
$$

You have been pushing a 4 kg box 2 m to the right applying 14 N force at 60° (as shown in the picture). Find the work you did.

Work done by an applied force

You have been pushing a 4 kg box 2 m to the right applying 14 N force at 60° (as shown in the picture). Find the work you did.

$$
|W|_{C F}=14 \cdot 2 \cdot \cos 60^{\circ}=14 \mathrm{~J}
$$

Work done by force of friction

$$
\begin{aligned}
& \Delta W=\left|F_{k}\right| \cdot|\Delta X| \cdot \cos 180^{\circ}=(-1) \cdot \mu_{\mu} \cdot F_{\mu^{\prime} \Delta x} \\
& \sum \Delta W=(-1) \cdot \mu_{1} \cdot F_{\mu} \cdot \sum_{\Delta x=-\mu F_{N} \cdot L}
\end{aligned}
$$

Work done by force of friction

$W_{f r r}=\sum\left|F_{f r}\right| * \Delta L * \cos (180)=$
$=-\sum \mu_{f} * F_{N} * \Delta L=$
$=-\mu_{f} * F_{N} * \sum \Delta L=$
$=-\mu_{f} * F_{N} * L$
$L=$ the length of the path $=$ the distance traveled

You pushed the box. The initial speed of the box right after the push was $15 \mathrm{~m} / \mathrm{s}$. If the coefficient of kinetic friction is 0.4 , find the work done by the force of friction.

$$
V_{0}=\xrightarrow{15 \mathrm{~m} / \mathrm{s}}
$$

$$
\begin{array}{r}
40 \mathrm{k} \\
-\quad \mathrm{F}_{1}
\end{array}
$$

$$
\begin{aligned}
& W_{L_{r}}=-1 \cdot \mu_{L_{i}} \cdot F_{r^{\prime}} L= \\
& =-1 \cdot 0.4 \cdot 400 \cdot L \\
& \rightarrow \\
& \text { Slide\#\# } 17 \\
& L=j=\frac{15^{2}}{2.4}
\end{aligned}
$$

