

$$v_y = v_{yi} - gt$$
 $y_f = y_i + v_i t - \frac{1}{2} 10t^2$ $v_y^2 = v_{oy}^2 - 2g(y - y_o)$ $v_{y ave} = (v_{y,0} + v_{y,f})/2$

For the projectile motion (y - axis is UP; $g \approx 10 \text{ m/s}^2$):

$$v_x = v_{x0} = const$$

 $x = x_0 + v_x t$ $v_y = v_{iy} - gt$ $y = y_0 + v_{oy} t - \frac{1}{2}gt^2$ $v_i = \sqrt[2]{v_{ix}^2 + v_{iy}^2}$ $v_f = \sqrt{v_{fr}^2 + v_{fv}^2}$

Newton's Laws

 \vec{F}_{Net} definition: $\vec{F}_{Net} = \vec{F}_1 + \vec{F}_2 + \dots$ Translational Equilibrium: $\vec{F}_{Net} = \vec{F}_1 + \vec{F}_2 + \dots = 0$ and v = 0Newton's Second Law: $F_{Net} = \Sigma F = m a$ Newton's Third Law: $F_{12} = -F_{21}$ kinetic $F_{kfr} = \mu_k * N$ static $F_{sfr} \le \mu_s * N$ $F_{sfr max} = \mu_s * N$ Friction: Weight: W = mg Apparent weight: |AW| = |N| or |AW| = |T|**Energy and Work:**

Work (constant force): $W = |F| |S| \cos \theta$ (θ is the angle between force and displacement) Kinetic Energy: $K = K_{tr} = \frac{1}{2}mv^2$

Work done by friction: $W = -F_{fr}L$ (*L* is the distance traveled) Power: $P = \frac{W}{t} = |F||v|\cos\theta$

Gravitational Potential Energy (y-axis is UP): $U_G = mgy$ Elastic Potential energy: $U_E = \frac{1}{2}kx^2$ **Energy Conservation:**

Master equation: $U_i + K_i + W_{nc} = U_f + K_f$ where W_{nc} is work done by non-conservative

forces, including force of friction.

Work – Kinetic Energy theorem: $K_f - K_i = W_{total} = W_{net} = W_1 + W_2 + ...$

Systems of Particles + Momentum:

 $X_{CoM} = \frac{x_1 m_1 + x_2 m_2 + \dots}{m_1 + m_2 + \dots}$ (similar expression is for Y_{CoM}) Center of mass:

Impulse: $J = \Delta p = F_{ave} \Delta t = \text{Area} \{F(t)\}$ Momentum: p = mv

Linear Momentum conservation ($F_{\text{Net System}} = 0$ or $\Delta t \approx 0$): $\vec{p}_{system initial} = \vec{p}_{system final}$ $\vec{p}_{system} = \vec{p}_1 + \vec{p}_2 + \dots$

Elastic collision (*KE* = const, all momenta point "to the right"): $v_1 + u_1 = u_2 + v_2$

Rotation:

$$\theta = \frac{s}{r}$$
 $\omega = \frac{v}{r}$ $\alpha = \frac{a_t}{r}$ $N = \frac{S}{2\pi r} = \frac{\theta_{(inrad)}}{2\pi} = \frac{\theta_{(indeg)}}{360}$
 $T = t/N = 1/n$ $n = f = 1/T$ $\omega T = 2\pi$

Centripetal acceleration: $a_c = \frac{v^2}{P}$; total acceleration: $a_{total} = \sqrt{a_c^2 + a_t^2}$ Constant angular acceleration equations: $\omega = \omega_0 + \alpha t$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$ Torque : $|\tau| = |rF \sin \theta| = |F|l$ (*l* – the shortest distance from the axis of rotation to the line of action of the force) Equilibrium : $\sum \vec{F} = 0$ and $\sum \vec{\tau} = 0$ CCW = "positive" CW = "negative" Rotational dynamics: $\vec{\tau}_{net} = I\vec{\alpha}$ $I_{disk} = \frac{1}{2}MR^2$ $I_{sphere} = \frac{2}{5}MR^2$ $I_{rod} = \frac{1}{12}ML^2$ $I_{ring} = MR^2$ Rotational Kinetic Energy: $K_{rot} = \frac{1}{2}I\omega^2$ Angular momentum: $L = I\omega$ (for a solid object) $|L| = |rpsin\theta|$ (for a point mass) Angular Momentum conservation: $\vec{L}_{system initial} = \vec{L}_{system final}$ Rolling (no slipping, no non-conservative forces): $\omega = \frac{v_{CofM}}{r} \qquad \alpha = \frac{a_{CofM}}{r}$ $U_i + K_i = U_f + K_f$ $K_{total} = K_{tr} + K_{rot}$ $K_{rot} = \frac{1}{2}I\omega^2 \qquad K_{tr} = \frac{1}{2}mv^2$ **SHM** $|F_{\rm el}| = k |\Delta l| = k |x|$ $U_{\rm el} = \frac{1}{2} k (\Delta l)^2 = \frac{1}{2} k x^2$ $a_x = -\omega^2 x$ $x = A \cos(\omega t + \theta_0) + D$ $v = -A\omega\sin(\omega t + \theta_0)$ $a = -A\omega^2\cos(\omega t + \theta_0)$ $\omega T = 2\pi$ $v_{\text{max}} = A \omega$ $a_{\text{max}} = A \omega^2$ f = 1/T (spring) $\omega^2 = \frac{K}{m}$ Pendulum, small angles: $\omega_{simple}^2 = \frac{g}{l}$ (physical pendulum) $\omega_{physical}^2 = \frac{g}{l} = \frac{mgL}{I}$ Fluids: Pressure: $P = \frac{F}{A}$ Buoyant Force: $F_b = \rho_{\text{fluid}} V_{\text{disp}} g$ $\rho_{\text{water}} = 1 \text{ gram/cm}^3$ Density: $\rho = M/V$ (static liquid) $P = P_{\text{Atm}} + \rho gh$ 1 Atm $\approx 10^5$ Pa Continuity: $A_1v_1 = A_2v_2$ VFR = Av = const MFR = $\rho*VFR = \rho_{Av}$ Bernoulli's Equation: $\rho g y_1 + \frac{1}{2} \rho v_1^2 + P_1 = \rho g y_2 + \frac{1}{2} \rho v_2^2 + P_2$

Gravity: $|F| = G \frac{m_1 m_2}{r^2}$ $U = -G \frac{m_1 m_2}{r}$ Kepler's law (3^d, circular orbits): $\left(\frac{r_1}{r_2}\right)^3 = \left(\frac{T_1}{T_2}\right)^2$ or $\frac{4\pi^2}{T^2} = \frac{GM}{r^3}$ $G \approx 7 \times 10^{-11}$ (SI units).

Temperature and Heat; Gases and Kinetic Theory

 $Q = \Delta U_{int} + W_{by system} \quad Q = C\Delta T \quad C = mc \quad Q_{solids} = Q_{liquids} = mc\Delta T \qquad Q_{gases} = nc_{molar}\Delta T$ $Q_{phase_change} = \pm Lm \qquad \text{isolated/insulated system: } \Sigma Q = 0 \qquad T(K) \approx t(C) + 273$ For solids: linear expansion $\Delta L = \alpha L_0 \Delta T$ volumetric expansion $\Delta V = 3\alpha V_0 \Delta T$

Ideal Gas: $KE_{1_tr_ave} = \frac{1}{2}m_0v_{rms}^2 = \frac{3}{2}kT$ $KE_{1_tr_tot_ave} = \frac{i}{2}kT$ PV = nRT = NkT $U_{int} = (i/2)nRT = (i/2)PV$ $n = N/N_A = m/M$ $M = N_A * m_0 = m/n$ $W_{cycle} = \sum W_{process} = Q_{cycle} = \sum Q_{process} = Q_h - |Q_c|$ $\Delta U_{T=const} = 0$ $\Delta U_{cycle} = \sum \Delta U_{process} = 0$ $W_{process} = area under the P-V curve$ $W_{p=const} = P_{\Delta}V$ $W_{isotherm} = P_1V_1\ln\frac{V_2}{V_1}$

$$\boldsymbol{e} = \frac{Q_h - /Q_c}{Q_h} = \frac{W_{cycle}}{Q_h} \quad \boldsymbol{e}_{ideal} = \frac{T_h - T_c}{T_h} \quad \Delta S = Q/T \quad (T = const) \quad \Delta S = Q/T_{Ave} \quad (small \; \Delta T)$$
$$R = kN_A \approx 8 \text{ J/(K mole)} \qquad k \approx 1.4 \times 10^{-23} \text{ J/K} \qquad N_A \approx 6 \times 10^{23} \text{ mole}^{-1} \qquad 1 \text{ cal} \approx 4 \text{ J}$$